Loading…
An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia
Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors hav...
Saved in:
Published in: | Cancers 2022-02, Vol.14 (5), p.1113 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853 |
container_end_page | |
container_issue | 5 |
container_start_page | 1113 |
container_title | Cancers |
container_volume | 14 |
creator | Anshabo, Abel Tesfaye Bantie, Laychiluh Diab, Sarah Lenjisa, Jimma Kebede, Alemwork Long, Yi Heinemann, Gary Karanjia, Jasmine Noll, Benjamin Basnet, Sunita K C Li, Manjun Milne, Robert Albrecht, Hugo Wang, Shudong |
description | Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with
values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment. |
doi_str_mv | 10.3390/cancers14051113 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8909834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638723118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqCDgzK2y1Esvaez1-utSKU2hIIK4hLM167WJ6e46tXeR8t_XER8CfLE18_PTvHkInVHygzFN5hYG61KmNeGUUvYJHVVEVjMhdP35zfsQneb8QMphjEohv6BDxish64oeoe1iwLcJum6Hf4UIjxA6aDqHYWjxZbjflPq598GCDXHK-GrYhCaMMeHo8fL3tZ5frNYM-1IYNw6vk4Oxd8O4by_sNDp8s3NdDC1euemv6wOcoAMPXXanz_cxurs4Xy8vZ6vbP1fLxWpmy1zjzLZSkUY3SnDrnNcgrfbCtsC4FHXbCA8NJZwLpXwrATjRwioipVKVoIqzY_TzSXc7Nb1rbRmq2DTbFHpIOxMhmPedIWzMfXw0ShOtWF0Evj8LpPhvcnk0fcjWdR0MrqzCVIIpWTFKVUG_fUAf4pSGYm9PSUFrzkih5k-UTTHn5PzrMJSYfaDmQ6Dlx9e3Hl75l_jYf3x4nM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637614530</pqid></control><display><type>article</type><title>An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Anshabo, Abel Tesfaye ; Bantie, Laychiluh ; Diab, Sarah ; Lenjisa, Jimma ; Kebede, Alemwork ; Long, Yi ; Heinemann, Gary ; Karanjia, Jasmine ; Noll, Benjamin ; Basnet, Sunita K C ; Li, Manjun ; Milne, Robert ; Albrecht, Hugo ; Wang, Shudong</creator><creatorcontrib>Anshabo, Abel Tesfaye ; Bantie, Laychiluh ; Diab, Sarah ; Lenjisa, Jimma ; Kebede, Alemwork ; Long, Yi ; Heinemann, Gary ; Karanjia, Jasmine ; Noll, Benjamin ; Basnet, Sunita K C ; Li, Manjun ; Milne, Robert ; Albrecht, Hugo ; Wang, Shudong</creatorcontrib><description>Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with
values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14051113</identifier><identifier>PMID: 35267421</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acute myeloid leukemia ; Apoptosis ; Cancer ; Cell cycle ; Cell proliferation ; Cell survival ; Clinical trials ; Cyclin-dependent kinases ; Drug resistance ; Flt3 protein ; Kinases ; Leukemia ; Mcl-1 protein ; Mutation ; Oral administration ; Phosphorylation ; Protein-tyrosine kinase ; Proteins ; Regression analysis ; RNA polymerase ; Transcription ; Tumor cell lines ; Tumorigenesis ; Xenografts</subject><ispartof>Cancers, 2022-02, Vol.14 (5), p.1113</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853</citedby><cites>FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853</cites><orcidid>0000-0001-9513-181X ; 0000-0002-5296-7614 ; 0000-0002-3951-1866 ; 0000-0001-6225-5525 ; 0000-0002-8671-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637614530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637614530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35267421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anshabo, Abel Tesfaye</creatorcontrib><creatorcontrib>Bantie, Laychiluh</creatorcontrib><creatorcontrib>Diab, Sarah</creatorcontrib><creatorcontrib>Lenjisa, Jimma</creatorcontrib><creatorcontrib>Kebede, Alemwork</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Heinemann, Gary</creatorcontrib><creatorcontrib>Karanjia, Jasmine</creatorcontrib><creatorcontrib>Noll, Benjamin</creatorcontrib><creatorcontrib>Basnet, Sunita K C</creatorcontrib><creatorcontrib>Li, Manjun</creatorcontrib><creatorcontrib>Milne, Robert</creatorcontrib><creatorcontrib>Albrecht, Hugo</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><title>An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with
values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment.</description><subject>Acute myeloid leukemia</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Clinical trials</subject><subject>Cyclin-dependent kinases</subject><subject>Drug resistance</subject><subject>Flt3 protein</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Mcl-1 protein</subject><subject>Mutation</subject><subject>Oral administration</subject><subject>Phosphorylation</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>RNA polymerase</subject><subject>Transcription</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Xenografts</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1PGzEQxa2qqCDgzK2y1Esvaez1-utSKU2hIIK4hLM167WJ6e46tXeR8t_XER8CfLE18_PTvHkInVHygzFN5hYG61KmNeGUUvYJHVVEVjMhdP35zfsQneb8QMphjEohv6BDxish64oeoe1iwLcJum6Hf4UIjxA6aDqHYWjxZbjflPq598GCDXHK-GrYhCaMMeHo8fL3tZ5frNYM-1IYNw6vk4Oxd8O4by_sNDp8s3NdDC1euemv6wOcoAMPXXanz_cxurs4Xy8vZ6vbP1fLxWpmy1zjzLZSkUY3SnDrnNcgrfbCtsC4FHXbCA8NJZwLpXwrATjRwioipVKVoIqzY_TzSXc7Nb1rbRmq2DTbFHpIOxMhmPedIWzMfXw0ShOtWF0Evj8LpPhvcnk0fcjWdR0MrqzCVIIpWTFKVUG_fUAf4pSGYm9PSUFrzkih5k-UTTHn5PzrMJSYfaDmQ6Dlx9e3Hl75l_jYf3x4nM0</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Anshabo, Abel Tesfaye</creator><creator>Bantie, Laychiluh</creator><creator>Diab, Sarah</creator><creator>Lenjisa, Jimma</creator><creator>Kebede, Alemwork</creator><creator>Long, Yi</creator><creator>Heinemann, Gary</creator><creator>Karanjia, Jasmine</creator><creator>Noll, Benjamin</creator><creator>Basnet, Sunita K C</creator><creator>Li, Manjun</creator><creator>Milne, Robert</creator><creator>Albrecht, Hugo</creator><creator>Wang, Shudong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9513-181X</orcidid><orcidid>https://orcid.org/0000-0002-5296-7614</orcidid><orcidid>https://orcid.org/0000-0002-3951-1866</orcidid><orcidid>https://orcid.org/0000-0001-6225-5525</orcidid><orcidid>https://orcid.org/0000-0002-8671-0024</orcidid></search><sort><creationdate>20220222</creationdate><title>An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia</title><author>Anshabo, Abel Tesfaye ; Bantie, Laychiluh ; Diab, Sarah ; Lenjisa, Jimma ; Kebede, Alemwork ; Long, Yi ; Heinemann, Gary ; Karanjia, Jasmine ; Noll, Benjamin ; Basnet, Sunita K C ; Li, Manjun ; Milne, Robert ; Albrecht, Hugo ; Wang, Shudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute myeloid leukemia</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Clinical trials</topic><topic>Cyclin-dependent kinases</topic><topic>Drug resistance</topic><topic>Flt3 protein</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Mcl-1 protein</topic><topic>Mutation</topic><topic>Oral administration</topic><topic>Phosphorylation</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>RNA polymerase</topic><topic>Transcription</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anshabo, Abel Tesfaye</creatorcontrib><creatorcontrib>Bantie, Laychiluh</creatorcontrib><creatorcontrib>Diab, Sarah</creatorcontrib><creatorcontrib>Lenjisa, Jimma</creatorcontrib><creatorcontrib>Kebede, Alemwork</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Heinemann, Gary</creatorcontrib><creatorcontrib>Karanjia, Jasmine</creatorcontrib><creatorcontrib>Noll, Benjamin</creatorcontrib><creatorcontrib>Basnet, Sunita K C</creatorcontrib><creatorcontrib>Li, Manjun</creatorcontrib><creatorcontrib>Milne, Robert</creatorcontrib><creatorcontrib>Albrecht, Hugo</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anshabo, Abel Tesfaye</au><au>Bantie, Laychiluh</au><au>Diab, Sarah</au><au>Lenjisa, Jimma</au><au>Kebede, Alemwork</au><au>Long, Yi</au><au>Heinemann, Gary</au><au>Karanjia, Jasmine</au><au>Noll, Benjamin</au><au>Basnet, Sunita K C</au><au>Li, Manjun</au><au>Milne, Robert</au><au>Albrecht, Hugo</au><au>Wang, Shudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>1113</spage><pages>1113-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with
values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35267421</pmid><doi>10.3390/cancers14051113</doi><orcidid>https://orcid.org/0000-0001-9513-181X</orcidid><orcidid>https://orcid.org/0000-0002-5296-7614</orcidid><orcidid>https://orcid.org/0000-0002-3951-1866</orcidid><orcidid>https://orcid.org/0000-0001-6225-5525</orcidid><orcidid>https://orcid.org/0000-0002-8671-0024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-02, Vol.14 (5), p.1113 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8909834 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Acute myeloid leukemia Apoptosis Cancer Cell cycle Cell proliferation Cell survival Clinical trials Cyclin-dependent kinases Drug resistance Flt3 protein Kinases Leukemia Mcl-1 protein Mutation Oral administration Phosphorylation Protein-tyrosine kinase Proteins Regression analysis RNA polymerase Transcription Tumor cell lines Tumorigenesis Xenografts |
title | An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Orally%20Bioavailable%20and%20Highly%20Efficacious%20Inhibitor%20of%20CDK9/FLT3%20for%20the%20Treatment%20of%20Acute%20Myeloid%20Leukemia&rft.jtitle=Cancers&rft.au=Anshabo,%20Abel%20Tesfaye&rft.date=2022-02-22&rft.volume=14&rft.issue=5&rft.spage=1113&rft.pages=1113-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14051113&rft_dat=%3Cproquest_pubme%3E2638723118%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-cd780b9b865ceef9a7c9f6cda35764db6fab1055688fd7aa5096c807788261853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637614530&rft_id=info:pmid/35267421&rfr_iscdi=true |