Loading…

In Vitro Biocompatibility of Several Children's Toothpastes on Human Gingival Fibroblasts

The European Academy of Paediatric Dentistry has recommended fluoride toothpastes from the eruption of the first teeth in children. Toothpastes stay in the mouth in contact with human gingival fibroblasts (hGFs) for a long time. Thus, the objective of this study was to compare the cytotoxicity of fi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-03, Vol.19 (5), p.2954
Main Authors: Pecci-Lloret, María Pilar, López-García, Sergio, Rodríguez-Lozano, Francisco Javier, Álvarez-Novoa, Pablo, García-Bernal, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The European Academy of Paediatric Dentistry has recommended fluoride toothpastes from the eruption of the first teeth in children. Toothpastes stay in the mouth in contact with human gingival fibroblasts (hGFs) for a long time. Thus, the objective of this study was to compare the cytotoxicity of five different commonly used children’s toothpastes: Oral B Kids +3 (Procter & Gamble, Alicante, Spain), Fluor Kin Calcium (Kin, Madrid, Spain), PHB Junior (PHB, Barcelona, Spain), Colgate +3 (Colgate Palmolive, Madrid, Spain) and Vitis Kids (Dentaid, Valencia, Spain) on hGFs. The children’s toothpastes were exposed to hGFs at different concentrations (1:1, 1:2, 1:4). Afterwards, several tests were performed: MTT assays, cell cycle analyses, cell cytoskeleton staining assays, apoptosis/necrosis assays, and ICP-MS and ion chromatography. Oral B displayed the lowest cytotoxicity and was the toothpaste with the highest fluoride ion release; meanwhile, the other toothpastes were cytotoxic (*** p < 0.0001); Fluor Kin being the one with the lowest fluoride ion release. Among all the toothpastes analyzed, Oral B exhibited the best results in vitro in terms of biocompatibility. Future evaluations, both in vitro and in vivo, are required to confirm the biocompatibility of sodium lauryl sarcosinate and sodium lauryl sulfate containing toothpastes.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19052954