Loading…

Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning

With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2022-03, Vol.2022, p.1477078-13
Main Authors: Yuan, Wang, Xiwen, Zhang, Rong, Zhou, Shangqin, Tang, Huan, Zhou, Wei, Ding
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3
cites cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3
container_end_page 13
container_issue
container_start_page 1477078
container_title Computational intelligence and neuroscience
container_volume 2022
creator Yuan, Wang
Xiwen, Zhang
Rong, Zhou
Shangqin, Tang
Huan, Zhou
Wei, Ding
description With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.
doi_str_mv 10.1155/2022/1477078
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697645353</galeid><sourcerecordid>A697645353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</originalsourceid><addsrcrecordid>eNp9kUtvEzEQgC1ERUvhxhmtxAUJ0vqxY-9ekEJ4tFIqpIr2arneceJqYxd7t4h_j5eEFDhwsqX55psXIS8YPWEM4JRTzk9ZrRRVzSNyxGSjZsCVeLz_SzgkT3O-pRQUUP6EHArgDSuJR-T6EjOaZNdVDNXVYn5dXZiA4z0mH1bVB7Q--xK5wGEdu-q9ydhN5BmOyefB2-oSfXAxWdxgGKplcYWS-YwcONNnfL57j8nVp49fF2ez5ZfP54v5cmZrJYeZvLENtQ04BGFNp7BrwHSuFVIwkKI23EnXWqu4scaCE8y1UFOQtXEWVCeOybut92682WBnSw_J9Pou-Y1JP3Q0Xv8dCX6tV_FeNy0rJWgRvN4JUvw2Yh70xmeLfV-2EMesuRRNW0vORUFf_YPexjGFMt4vCmrZSHigVqZHPe2m1LWTVM9lq2QNAibX2y1lU8w5odu3zKiezqqns-rdWQv-8s8x9_DvOxbgzRZY-9CZ7_7_up82salg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546865</pqid></control><display><type>article</type><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding</creator><contributor>Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</contributor><creatorcontrib>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding ; Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</creatorcontrib><description>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/1477078</identifier><identifier>PMID: 35281202</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Air combat ; Aircraft ; Algorithms ; Artificial intelligence ; Battlefields ; Combat aircraft ; Computer Simulation ; Decision making ; Deep learning ; Drone aircraft ; Exploration ; Heuristic ; Heuristics ; Machine learning ; Methods ; Military aspects ; Military operations ; Neural networks ; Optimization ; Problem solving ; Reinforcement ; Reinforcement, Psychology ; Teaching methods ; Unmanned aerial vehicles ; Velocity</subject><ispartof>Computational intelligence and neuroscience, 2022-03, Vol.2022, p.1477078-13</ispartof><rights>Copyright © 2022 Wang Yuan et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Wang Yuan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Wang Yuan et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</citedby><cites>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</cites><orcidid>0000-0002-7247-0058 ; 0000-0002-9894-9358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2638546865/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2638546865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35281202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khalil, Ahmed Mostafa</contributor><contributor>Ahmed Mostafa Khalil</contributor><creatorcontrib>Yuan, Wang</creatorcontrib><creatorcontrib>Xiwen, Zhang</creatorcontrib><creatorcontrib>Rong, Zhou</creatorcontrib><creatorcontrib>Shangqin, Tang</creatorcontrib><creatorcontrib>Huan, Zhou</creatorcontrib><creatorcontrib>Wei, Ding</creatorcontrib><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</description><subject>Air combat</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Battlefields</subject><subject>Combat aircraft</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Exploration</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Military aspects</subject><subject>Military operations</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Problem solving</subject><subject>Reinforcement</subject><subject>Reinforcement, Psychology</subject><subject>Teaching methods</subject><subject>Unmanned aerial vehicles</subject><subject>Velocity</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtvEzEQgC1ERUvhxhmtxAUJ0vqxY-9ekEJ4tFIqpIr2arneceJqYxd7t4h_j5eEFDhwsqX55psXIS8YPWEM4JRTzk9ZrRRVzSNyxGSjZsCVeLz_SzgkT3O-pRQUUP6EHArgDSuJR-T6EjOaZNdVDNXVYn5dXZiA4z0mH1bVB7Q--xK5wGEdu-q9ydhN5BmOyefB2-oSfXAxWdxgGKplcYWS-YwcONNnfL57j8nVp49fF2ez5ZfP54v5cmZrJYeZvLENtQ04BGFNp7BrwHSuFVIwkKI23EnXWqu4scaCE8y1UFOQtXEWVCeOybut92682WBnSw_J9Pou-Y1JP3Q0Xv8dCX6tV_FeNy0rJWgRvN4JUvw2Yh70xmeLfV-2EMesuRRNW0vORUFf_YPexjGFMt4vCmrZSHigVqZHPe2m1LWTVM9lq2QNAibX2y1lU8w5odu3zKiezqqns-rdWQv-8s8x9_DvOxbgzRZY-9CZ7_7_up82salg</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Yuan, Wang</creator><creator>Xiwen, Zhang</creator><creator>Rong, Zhou</creator><creator>Shangqin, Tang</creator><creator>Huan, Zhou</creator><creator>Wei, Ding</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7247-0058</orcidid><orcidid>https://orcid.org/0000-0002-9894-9358</orcidid></search><sort><creationdate>20220303</creationdate><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><author>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air combat</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Battlefields</topic><topic>Combat aircraft</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Exploration</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Military aspects</topic><topic>Military operations</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Problem solving</topic><topic>Reinforcement</topic><topic>Reinforcement, Psychology</topic><topic>Teaching methods</topic><topic>Unmanned aerial vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Wang</creatorcontrib><creatorcontrib>Xiwen, Zhang</creatorcontrib><creatorcontrib>Rong, Zhou</creatorcontrib><creatorcontrib>Shangqin, Tang</creatorcontrib><creatorcontrib>Huan, Zhou</creatorcontrib><creatorcontrib>Wei, Ding</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Wang</au><au>Xiwen, Zhang</au><au>Rong, Zhou</au><au>Shangqin, Tang</au><au>Huan, Zhou</au><au>Wei, Ding</au><au>Khalil, Ahmed Mostafa</au><au>Ahmed Mostafa Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>2022</volume><spage>1477078</spage><epage>13</epage><pages>1477078-13</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35281202</pmid><doi>10.1155/2022/1477078</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7247-0058</orcidid><orcidid>https://orcid.org/0000-0002-9894-9358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-03, Vol.2022, p.1477078-13
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913150
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access
subjects Air combat
Aircraft
Algorithms
Artificial intelligence
Battlefields
Combat aircraft
Computer Simulation
Decision making
Deep learning
Drone aircraft
Exploration
Heuristic
Heuristics
Machine learning
Methods
Military aspects
Military operations
Neural networks
Optimization
Problem solving
Reinforcement
Reinforcement, Psychology
Teaching methods
Unmanned aerial vehicles
Velocity
title Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20UCAV%20Maneuvering%20Decision%20Method%20Based%20on%20Heuristic%20Reinforcement%20Learning&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Yuan,%20Wang&rft.date=2022-03-03&rft.volume=2022&rft.spage=1477078&rft.epage=13&rft.pages=1477078-13&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/1477078&rft_dat=%3Cgale_pubme%3EA697645353%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638546865&rft_id=info:pmid/35281202&rft_galeid=A697645353&rfr_iscdi=true