Loading…
Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning
With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently...
Saved in:
Published in: | Computational intelligence and neuroscience 2022-03, Vol.2022, p.1477078-13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3 |
container_end_page | 13 |
container_issue | |
container_start_page | 1477078 |
container_title | Computational intelligence and neuroscience |
container_volume | 2022 |
creator | Yuan, Wang Xiwen, Zhang Rong, Zhou Shangqin, Tang Huan, Zhou Wei, Ding |
description | With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes. |
doi_str_mv | 10.1155/2022/1477078 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697645353</galeid><sourcerecordid>A697645353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</originalsourceid><addsrcrecordid>eNp9kUtvEzEQgC1ERUvhxhmtxAUJ0vqxY-9ekEJ4tFIqpIr2arneceJqYxd7t4h_j5eEFDhwsqX55psXIS8YPWEM4JRTzk9ZrRRVzSNyxGSjZsCVeLz_SzgkT3O-pRQUUP6EHArgDSuJR-T6EjOaZNdVDNXVYn5dXZiA4z0mH1bVB7Q--xK5wGEdu-q9ydhN5BmOyefB2-oSfXAxWdxgGKplcYWS-YwcONNnfL57j8nVp49fF2ez5ZfP54v5cmZrJYeZvLENtQ04BGFNp7BrwHSuFVIwkKI23EnXWqu4scaCE8y1UFOQtXEWVCeOybut92682WBnSw_J9Pou-Y1JP3Q0Xv8dCX6tV_FeNy0rJWgRvN4JUvw2Yh70xmeLfV-2EMesuRRNW0vORUFf_YPexjGFMt4vCmrZSHigVqZHPe2m1LWTVM9lq2QNAibX2y1lU8w5odu3zKiezqqns-rdWQv-8s8x9_DvOxbgzRZY-9CZ7_7_up82salg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638546865</pqid></control><display><type>article</type><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding</creator><contributor>Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</contributor><creatorcontrib>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding ; Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</creatorcontrib><description>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/1477078</identifier><identifier>PMID: 35281202</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Air combat ; Aircraft ; Algorithms ; Artificial intelligence ; Battlefields ; Combat aircraft ; Computer Simulation ; Decision making ; Deep learning ; Drone aircraft ; Exploration ; Heuristic ; Heuristics ; Machine learning ; Methods ; Military aspects ; Military operations ; Neural networks ; Optimization ; Problem solving ; Reinforcement ; Reinforcement, Psychology ; Teaching methods ; Unmanned aerial vehicles ; Velocity</subject><ispartof>Computational intelligence and neuroscience, 2022-03, Vol.2022, p.1477078-13</ispartof><rights>Copyright © 2022 Wang Yuan et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Wang Yuan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Wang Yuan et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</citedby><cites>FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</cites><orcidid>0000-0002-7247-0058 ; 0000-0002-9894-9358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2638546865/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2638546865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35281202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khalil, Ahmed Mostafa</contributor><contributor>Ahmed Mostafa Khalil</contributor><creatorcontrib>Yuan, Wang</creatorcontrib><creatorcontrib>Xiwen, Zhang</creatorcontrib><creatorcontrib>Rong, Zhou</creatorcontrib><creatorcontrib>Shangqin, Tang</creatorcontrib><creatorcontrib>Huan, Zhou</creatorcontrib><creatorcontrib>Wei, Ding</creatorcontrib><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</description><subject>Air combat</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Battlefields</subject><subject>Combat aircraft</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Exploration</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Military aspects</subject><subject>Military operations</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Problem solving</subject><subject>Reinforcement</subject><subject>Reinforcement, Psychology</subject><subject>Teaching methods</subject><subject>Unmanned aerial vehicles</subject><subject>Velocity</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtvEzEQgC1ERUvhxhmtxAUJ0vqxY-9ekEJ4tFIqpIr2arneceJqYxd7t4h_j5eEFDhwsqX55psXIS8YPWEM4JRTzk9ZrRRVzSNyxGSjZsCVeLz_SzgkT3O-pRQUUP6EHArgDSuJR-T6EjOaZNdVDNXVYn5dXZiA4z0mH1bVB7Q--xK5wGEdu-q9ydhN5BmOyefB2-oSfXAxWdxgGKplcYWS-YwcONNnfL57j8nVp49fF2ez5ZfP54v5cmZrJYeZvLENtQ04BGFNp7BrwHSuFVIwkKI23EnXWqu4scaCE8y1UFOQtXEWVCeOybut92682WBnSw_J9Pou-Y1JP3Q0Xv8dCX6tV_FeNy0rJWgRvN4JUvw2Yh70xmeLfV-2EMesuRRNW0vORUFf_YPexjGFMt4vCmrZSHigVqZHPe2m1LWTVM9lq2QNAibX2y1lU8w5odu3zKiezqqns-rdWQv-8s8x9_DvOxbgzRZY-9CZ7_7_up82salg</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Yuan, Wang</creator><creator>Xiwen, Zhang</creator><creator>Rong, Zhou</creator><creator>Shangqin, Tang</creator><creator>Huan, Zhou</creator><creator>Wei, Ding</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7247-0058</orcidid><orcidid>https://orcid.org/0000-0002-9894-9358</orcidid></search><sort><creationdate>20220303</creationdate><title>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</title><author>Yuan, Wang ; Xiwen, Zhang ; Rong, Zhou ; Shangqin, Tang ; Huan, Zhou ; Wei, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air combat</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Battlefields</topic><topic>Combat aircraft</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Exploration</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Military aspects</topic><topic>Military operations</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Problem solving</topic><topic>Reinforcement</topic><topic>Reinforcement, Psychology</topic><topic>Teaching methods</topic><topic>Unmanned aerial vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Wang</creatorcontrib><creatorcontrib>Xiwen, Zhang</creatorcontrib><creatorcontrib>Rong, Zhou</creatorcontrib><creatorcontrib>Shangqin, Tang</creatorcontrib><creatorcontrib>Huan, Zhou</creatorcontrib><creatorcontrib>Wei, Ding</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Wang</au><au>Xiwen, Zhang</au><au>Rong, Zhou</au><au>Shangqin, Tang</au><au>Huan, Zhou</au><au>Wei, Ding</au><au>Khalil, Ahmed Mostafa</au><au>Ahmed Mostafa Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>2022</volume><spage>1477078</spage><epage>13</epage><pages>1477078-13</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>With the rapid development of unmanned combat aerial vehicle (UCAV)-related technologies, UCAVs are playing an increasingly important role in military operations. It has become an inevitable trend in the development of future air combat battlefields that UCAVs complete air combat tasks independently to acquire air superiority. In this paper, the UCAV maneuver decision problem in continuous action space is studied based on the deep reinforcement learning strategy optimization method. The UCAV platform model of continuous action space was established. Focusing on the problem of insufficient exploration ability of Ornstein–Uhlenbeck (OU) exploration strategy in the deep deterministic policy gradient (DDPG) algorithm, a heuristic DDPG algorithm was proposed by introducing heuristic exploration strategy, and then a UCAV air combat maneuver decision method based on a heuristic DDPG algorithm is proposed. The superior performance of the algorithm is verified by comparison with different algorithms in the test environment, and the effectiveness of the decision method is verified by simulation of air combat tasks with different difficulty and attack modes.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35281202</pmid><doi>10.1155/2022/1477078</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7247-0058</orcidid><orcidid>https://orcid.org/0000-0002-9894-9358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2022-03, Vol.2022, p.1477078-13 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913150 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access |
subjects | Air combat Aircraft Algorithms Artificial intelligence Battlefields Combat aircraft Computer Simulation Decision making Deep learning Drone aircraft Exploration Heuristic Heuristics Machine learning Methods Military aspects Military operations Neural networks Optimization Problem solving Reinforcement Reinforcement, Psychology Teaching methods Unmanned aerial vehicles Velocity |
title | Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20UCAV%20Maneuvering%20Decision%20Method%20Based%20on%20Heuristic%20Reinforcement%20Learning&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Yuan,%20Wang&rft.date=2022-03-03&rft.volume=2022&rft.spage=1477078&rft.epage=13&rft.pages=1477078-13&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/1477078&rft_dat=%3Cgale_pubme%3EA697645353%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-6bc80c85fe53cad7ed85adf936315634a2f6f9cc72acac5f31f9540564afc57d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638546865&rft_id=info:pmid/35281202&rft_galeid=A697645353&rfr_iscdi=true |