Loading…

The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase

The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absor...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2022-03, Vol.298 (3), p.101696-101696, Article 101696
Main Authors: Ma, Zhongxin, Holland, Ashley A., Szlamkowicz, Ilana, Anagnostopoulos, Vasileios, Caldas Nogueira, Maria Luiza, Caranto, Jonathan D., Davidson, Victor L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483
cites cdi_FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483
container_end_page 101696
container_issue 3
container_start_page 101696
container_title The Journal of biological chemistry
container_volume 298
creator Ma, Zhongxin
Holland, Ashley A.
Szlamkowicz, Ilana
Anagnostopoulos, Vasileios
Caldas Nogueira, Maria Luiza
Caranto, Jonathan D.
Davidson, Victor L.
description The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2−) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3−). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 μM and a kcat/Km of 2.3 × 105 M−1s−1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•−) generated by macrophages to defend against bacteria, as well as to produce NO2− to adapt to hypoxic conditions.
doi_str_mv 10.1016/j.jbc.2022.101696
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822001363</els_id><sourcerecordid>2628299710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6A7xIjl56zFd3JwiCLOsHrHhZwYMQ0km1U7PdyZj0LM6_N-Osi17MJQn11lMhDyHPOVtzxrtX2_V28GvBhPh9N90DsuJMy0a2_OtDsmJM8MaIVp-RJ6VsWV3K8MfkrNZb1iu1It-uN0A3MEM-LJuMsZnwBmhAzCnSXU4LYKRjTjP9dPBpcH6BjPuZ3rhYXEGkWKijEZeMnqafGIDuIB8PrsBT8mh0U4Fnd_s5-fLu8vriQ3P1-f3Hi7dXjVctXxopIXjDxqCZAmEkVyC7gas-hF460Y0uyDC0TnNphNIiKNErzULPXBBeaXlO3py4u_0wVxbEJbvJ7jLOLh9scmj_rUTc2O_p1mrDpWSqAl7eAXL6sYey2BmLh2lyEdK-WNEJLYzpOatRfor6nErJMN6P4cweLditrVbs0Yo9Wak9L_5-333HHw018PoUgPpLtwjZFo8QPQTM4BcbEv4H_wspd57z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628299710</pqid></control><display><type>article</type><title>The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>Ma, Zhongxin ; Holland, Ashley A. ; Szlamkowicz, Ilana ; Anagnostopoulos, Vasileios ; Caldas Nogueira, Maria Luiza ; Caranto, Jonathan D. ; Davidson, Victor L.</creator><creatorcontrib>Ma, Zhongxin ; Holland, Ashley A. ; Szlamkowicz, Ilana ; Anagnostopoulos, Vasileios ; Caldas Nogueira, Maria Luiza ; Caranto, Jonathan D. ; Davidson, Victor L.</creatorcontrib><description>The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2−) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3−). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 μM and a kcat/Km of 2.3 × 105 M−1s−1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•−) generated by macrophages to defend against bacteria, as well as to produce NO2− to adapt to hypoxic conditions.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.101696</identifier><identifier>PMID: 35150744</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>catalase ; Hemerythrin - metabolism ; Hydrogen Peroxide ; Kinetics ; mycobacteria ; Mycobacterium kansasii - enzymology ; Nitrates - metabolism ; Nitric Oxide - metabolism ; nitric oxide dioxygenase ; nitric oxide oxidase ; Nitrites - metabolism ; Nitrogen Dioxide - metabolism ; nitrosylation ; nonheme iron ; Oxidoreductases - metabolism ; Peroxidases ; tuberculosis</subject><ispartof>The Journal of biological chemistry, 2022-03, Vol.298 (3), p.101696-101696, Article 101696</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483</citedby><cites>FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483</cites><orcidid>0000-0002-9196-5275 ; 0000-0002-6308-0226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925822001363$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35150744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhongxin</creatorcontrib><creatorcontrib>Holland, Ashley A.</creatorcontrib><creatorcontrib>Szlamkowicz, Ilana</creatorcontrib><creatorcontrib>Anagnostopoulos, Vasileios</creatorcontrib><creatorcontrib>Caldas Nogueira, Maria Luiza</creatorcontrib><creatorcontrib>Caranto, Jonathan D.</creatorcontrib><creatorcontrib>Davidson, Victor L.</creatorcontrib><title>The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2−) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3−). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 μM and a kcat/Km of 2.3 × 105 M−1s−1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•−) generated by macrophages to defend against bacteria, as well as to produce NO2− to adapt to hypoxic conditions.</description><subject>catalase</subject><subject>Hemerythrin - metabolism</subject><subject>Hydrogen Peroxide</subject><subject>Kinetics</subject><subject>mycobacteria</subject><subject>Mycobacterium kansasii - enzymology</subject><subject>Nitrates - metabolism</subject><subject>Nitric Oxide - metabolism</subject><subject>nitric oxide dioxygenase</subject><subject>nitric oxide oxidase</subject><subject>Nitrites - metabolism</subject><subject>Nitrogen Dioxide - metabolism</subject><subject>nitrosylation</subject><subject>nonheme iron</subject><subject>Oxidoreductases - metabolism</subject><subject>Peroxidases</subject><subject>tuberculosis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6A7xIjl56zFd3JwiCLOsHrHhZwYMQ0km1U7PdyZj0LM6_N-Osi17MJQn11lMhDyHPOVtzxrtX2_V28GvBhPh9N90DsuJMy0a2_OtDsmJM8MaIVp-RJ6VsWV3K8MfkrNZb1iu1It-uN0A3MEM-LJuMsZnwBmhAzCnSXU4LYKRjTjP9dPBpcH6BjPuZ3rhYXEGkWKijEZeMnqafGIDuIB8PrsBT8mh0U4Fnd_s5-fLu8vriQ3P1-f3Hi7dXjVctXxopIXjDxqCZAmEkVyC7gas-hF460Y0uyDC0TnNphNIiKNErzULPXBBeaXlO3py4u_0wVxbEJbvJ7jLOLh9scmj_rUTc2O_p1mrDpWSqAl7eAXL6sYey2BmLh2lyEdK-WNEJLYzpOatRfor6nErJMN6P4cweLditrVbs0Yo9Wak9L_5-333HHw018PoUgPpLtwjZFo8QPQTM4BcbEv4H_wspd57z</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ma, Zhongxin</creator><creator>Holland, Ashley A.</creator><creator>Szlamkowicz, Ilana</creator><creator>Anagnostopoulos, Vasileios</creator><creator>Caldas Nogueira, Maria Luiza</creator><creator>Caranto, Jonathan D.</creator><creator>Davidson, Victor L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9196-5275</orcidid><orcidid>https://orcid.org/0000-0002-6308-0226</orcidid></search><sort><creationdate>20220301</creationdate><title>The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase</title><author>Ma, Zhongxin ; Holland, Ashley A. ; Szlamkowicz, Ilana ; Anagnostopoulos, Vasileios ; Caldas Nogueira, Maria Luiza ; Caranto, Jonathan D. ; Davidson, Victor L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>catalase</topic><topic>Hemerythrin - metabolism</topic><topic>Hydrogen Peroxide</topic><topic>Kinetics</topic><topic>mycobacteria</topic><topic>Mycobacterium kansasii - enzymology</topic><topic>Nitrates - metabolism</topic><topic>Nitric Oxide - metabolism</topic><topic>nitric oxide dioxygenase</topic><topic>nitric oxide oxidase</topic><topic>Nitrites - metabolism</topic><topic>Nitrogen Dioxide - metabolism</topic><topic>nitrosylation</topic><topic>nonheme iron</topic><topic>Oxidoreductases - metabolism</topic><topic>Peroxidases</topic><topic>tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhongxin</creatorcontrib><creatorcontrib>Holland, Ashley A.</creatorcontrib><creatorcontrib>Szlamkowicz, Ilana</creatorcontrib><creatorcontrib>Anagnostopoulos, Vasileios</creatorcontrib><creatorcontrib>Caldas Nogueira, Maria Luiza</creatorcontrib><creatorcontrib>Caranto, Jonathan D.</creatorcontrib><creatorcontrib>Davidson, Victor L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhongxin</au><au>Holland, Ashley A.</au><au>Szlamkowicz, Ilana</au><au>Anagnostopoulos, Vasileios</au><au>Caldas Nogueira, Maria Luiza</au><au>Caranto, Jonathan D.</au><au>Davidson, Victor L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>298</volume><issue>3</issue><spage>101696</spage><epage>101696</epage><pages>101696-101696</pages><artnum>101696</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2−) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3−). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 μM and a kcat/Km of 2.3 × 105 M−1s−1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•−) generated by macrophages to defend against bacteria, as well as to produce NO2− to adapt to hypoxic conditions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35150744</pmid><doi>10.1016/j.jbc.2022.101696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9196-5275</orcidid><orcidid>https://orcid.org/0000-0002-6308-0226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-03, Vol.298 (3), p.101696-101696, Article 101696
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8913304
source PubMed Central Free; Elsevier ScienceDirect Journals
subjects catalase
Hemerythrin - metabolism
Hydrogen Peroxide
Kinetics
mycobacteria
Mycobacterium kansasii - enzymology
Nitrates - metabolism
Nitric Oxide - metabolism
nitric oxide dioxygenase
nitric oxide oxidase
Nitrites - metabolism
Nitrogen Dioxide - metabolism
nitrosylation
nonheme iron
Oxidoreductases - metabolism
Peroxidases
tuberculosis
title The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hemerythrin-like%20diiron%20protein%20from%20Mycobacterium%20kansasii%20is%20a%20nitric%20oxide%20peroxidase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ma,%20Zhongxin&rft.date=2022-03-01&rft.volume=298&rft.issue=3&rft.spage=101696&rft.epage=101696&rft.pages=101696-101696&rft.artnum=101696&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.101696&rft_dat=%3Cproquest_pubme%3E2628299710%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-33edc90fd804e29314e36b147dd73a26fad3db5a81392482d427480d70ad2c483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628299710&rft_id=info:pmid/35150744&rfr_iscdi=true