Loading…
Analysis of Three Architectures for Controlling PTP1B with Light
Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosph...
Saved in:
Published in: | ACS synthetic biology 2022-01, Vol.11 (1), p.61-68 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33 |
---|---|
cites | cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33 |
container_end_page | 68 |
container_issue | 1 |
container_start_page | 61 |
container_title | ACS synthetic biology |
container_volume | 11 |
creator | Hongdusit, Akarawin Liechty, Evan T Fox, Jerome M |
description | Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs. |
doi_str_mv | 10.1021/acssynbio.1c00398 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8916241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610083475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujEYP8ADdmlm4G-5g-ZmNE4ishkQWum1JapmSYYjuj4d9bAxLceDf3Jvecc28-AK4QHCKI0a3SMW6bufNDpCEkpTgBFxgxlFPIyOnR3AODGFcwFaWEEnEOeqQQpUCivAD3o0bV2-hi5m02q4Ix2SjoyrVGt10wMbM-ZGPftMHXtWuW2XQ2RQ_Zl2urbOKWVXsJzqyqoxnsex-8Pz3Oxi_55O35dTya5KogvM05NczOsYCYccOZoFpjiEpILGVULzQTClplLdYGpt2CF5RzU84NKbm1mpA-uNvlbrr52iy0SS-pWm6CW6uwlV45-XfTuEou_acUJWK4QCngZh8Q_EdnYivXLmpT16oxvosSMwShIAWnSYp2Uh18jMHYwxkE5Q98eYAv9_CT5_r4v4PjF3US5DtB8sqV70ICH_8J_AaU2pKB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610083475</pqid></control><display><type>article</type><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</creator><creatorcontrib>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</creatorcontrib><description>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.1c00398</identifier><identifier>PMID: 34898189</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Enzyme Inhibitors ; Mammals ; Phosphorylation ; Proteins</subject><ispartof>ACS synthetic biology, 2022-01, Vol.11 (1), p.61-68</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</citedby><cites>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</cites><orcidid>0000-0002-3739-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hongdusit, Akarawin</creatorcontrib><creatorcontrib>Liechty, Evan T</creatorcontrib><creatorcontrib>Fox, Jerome M</creatorcontrib><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</description><subject>Animals</subject><subject>Enzyme Inhibitors</subject><subject>Mammals</subject><subject>Phosphorylation</subject><subject>Proteins</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAjEUhRujEYP8ADdmlm4G-5g-ZmNE4ishkQWum1JapmSYYjuj4d9bAxLceDf3Jvecc28-AK4QHCKI0a3SMW6bufNDpCEkpTgBFxgxlFPIyOnR3AODGFcwFaWEEnEOeqQQpUCivAD3o0bV2-hi5m02q4Ix2SjoyrVGt10wMbM-ZGPftMHXtWuW2XQ2RQ_Zl2urbOKWVXsJzqyqoxnsex-8Pz3Oxi_55O35dTya5KogvM05NczOsYCYccOZoFpjiEpILGVULzQTClplLdYGpt2CF5RzU84NKbm1mpA-uNvlbrr52iy0SS-pWm6CW6uwlV45-XfTuEou_acUJWK4QCngZh8Q_EdnYivXLmpT16oxvosSMwShIAWnSYp2Uh18jMHYwxkE5Q98eYAv9_CT5_r4v4PjF3US5DtB8sqV70ICH_8J_AaU2pKB</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Hongdusit, Akarawin</creator><creator>Liechty, Evan T</creator><creator>Fox, Jerome M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3739-1899</orcidid></search><sort><creationdate>20220121</creationdate><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><author>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Enzyme Inhibitors</topic><topic>Mammals</topic><topic>Phosphorylation</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongdusit, Akarawin</creatorcontrib><creatorcontrib>Liechty, Evan T</creatorcontrib><creatorcontrib>Fox, Jerome M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongdusit, Akarawin</au><au>Liechty, Evan T</au><au>Fox, Jerome M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Three Architectures for Controlling PTP1B with Light</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-01-21</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34898189</pmid><doi>10.1021/acssynbio.1c00398</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3739-1899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2022-01, Vol.11 (1), p.61-68 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8916241 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Enzyme Inhibitors Mammals Phosphorylation Proteins |
title | Analysis of Three Architectures for Controlling PTP1B with Light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Three%20Architectures%20for%20Controlling%20PTP1B%20with%20Light&rft.jtitle=ACS%20synthetic%20biology&rft.au=Hongdusit,%20Akarawin&rft.date=2022-01-21&rft.volume=11&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.1c00398&rft_dat=%3Cproquest_pubme%3E2610083475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610083475&rft_id=info:pmid/34898189&rfr_iscdi=true |