Loading…

Analysis of Three Architectures for Controlling PTP1B with Light

Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosph...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2022-01, Vol.11 (1), p.61-68
Main Authors: Hongdusit, Akarawin, Liechty, Evan T, Fox, Jerome M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33
cites cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33
container_end_page 68
container_issue 1
container_start_page 61
container_title ACS synthetic biology
container_volume 11
creator Hongdusit, Akarawin
Liechty, Evan T
Fox, Jerome M
description Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
doi_str_mv 10.1021/acssynbio.1c00398
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8916241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610083475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujEYP8ADdmlm4G-5g-ZmNE4ishkQWum1JapmSYYjuj4d9bAxLceDf3Jvecc28-AK4QHCKI0a3SMW6bufNDpCEkpTgBFxgxlFPIyOnR3AODGFcwFaWEEnEOeqQQpUCivAD3o0bV2-hi5m02q4Ix2SjoyrVGt10wMbM-ZGPftMHXtWuW2XQ2RQ_Zl2urbOKWVXsJzqyqoxnsex-8Pz3Oxi_55O35dTya5KogvM05NczOsYCYccOZoFpjiEpILGVULzQTClplLdYGpt2CF5RzU84NKbm1mpA-uNvlbrr52iy0SS-pWm6CW6uwlV45-XfTuEou_acUJWK4QCngZh8Q_EdnYivXLmpT16oxvosSMwShIAWnSYp2Uh18jMHYwxkE5Q98eYAv9_CT5_r4v4PjF3US5DtB8sqV70ICH_8J_AaU2pKB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610083475</pqid></control><display><type>article</type><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</creator><creatorcontrib>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</creatorcontrib><description>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.1c00398</identifier><identifier>PMID: 34898189</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Enzyme Inhibitors ; Mammals ; Phosphorylation ; Proteins</subject><ispartof>ACS synthetic biology, 2022-01, Vol.11 (1), p.61-68</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</citedby><cites>FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</cites><orcidid>0000-0002-3739-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hongdusit, Akarawin</creatorcontrib><creatorcontrib>Liechty, Evan T</creatorcontrib><creatorcontrib>Fox, Jerome M</creatorcontrib><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</description><subject>Animals</subject><subject>Enzyme Inhibitors</subject><subject>Mammals</subject><subject>Phosphorylation</subject><subject>Proteins</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAjEUhRujEYP8ADdmlm4G-5g-ZmNE4ishkQWum1JapmSYYjuj4d9bAxLceDf3Jvecc28-AK4QHCKI0a3SMW6bufNDpCEkpTgBFxgxlFPIyOnR3AODGFcwFaWEEnEOeqQQpUCivAD3o0bV2-hi5m02q4Ix2SjoyrVGt10wMbM-ZGPftMHXtWuW2XQ2RQ_Zl2urbOKWVXsJzqyqoxnsex-8Pz3Oxi_55O35dTya5KogvM05NczOsYCYccOZoFpjiEpILGVULzQTClplLdYGpt2CF5RzU84NKbm1mpA-uNvlbrr52iy0SS-pWm6CW6uwlV45-XfTuEou_acUJWK4QCngZh8Q_EdnYivXLmpT16oxvosSMwShIAWnSYp2Uh18jMHYwxkE5Q98eYAv9_CT5_r4v4PjF3US5DtB8sqV70ICH_8J_AaU2pKB</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Hongdusit, Akarawin</creator><creator>Liechty, Evan T</creator><creator>Fox, Jerome M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3739-1899</orcidid></search><sort><creationdate>20220121</creationdate><title>Analysis of Three Architectures for Controlling PTP1B with Light</title><author>Hongdusit, Akarawin ; Liechty, Evan T ; Fox, Jerome M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Enzyme Inhibitors</topic><topic>Mammals</topic><topic>Phosphorylation</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongdusit, Akarawin</creatorcontrib><creatorcontrib>Liechty, Evan T</creatorcontrib><creatorcontrib>Fox, Jerome M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongdusit, Akarawin</au><au>Liechty, Evan T</au><au>Fox, Jerome M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Three Architectures for Controlling PTP1B with Light</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-01-21</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34898189</pmid><doi>10.1021/acssynbio.1c00398</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3739-1899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2022-01, Vol.11 (1), p.61-68
issn 2161-5063
2161-5063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8916241
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Enzyme Inhibitors
Mammals
Phosphorylation
Proteins
title Analysis of Three Architectures for Controlling PTP1B with Light
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Three%20Architectures%20for%20Controlling%20PTP1B%20with%20Light&rft.jtitle=ACS%20synthetic%20biology&rft.au=Hongdusit,%20Akarawin&rft.date=2022-01-21&rft.volume=11&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.1c00398&rft_dat=%3Cproquest_pubme%3E2610083475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a437t-75e6fb280267e7685cc201903f565cdc68a0faff2ce05ccd74577e9be397ffc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610083475&rft_id=info:pmid/34898189&rfr_iscdi=true