Loading…

Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs

Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investi...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) 2022-04, Vol.294, p.120383-120383, Article 120383
Main Authors: Dai, Xiaodong, Wang, Yongmei, Li, Yuexin, Zhong, Yongping, Pei, Min, Long, Jing, Dong, Xingchen, Chen, Yi-Li, Wang, Qi, Wang, Guifeng, Gold, Bruce G., Vandenbark, Arthur A., Neve, Kim A., Offner, Halina, Wang, Chunhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3
cites cdi_FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3
container_end_page 120383
container_issue
container_start_page 120383
container_title Life sciences (1973)
container_volume 294
creator Dai, Xiaodong
Wang, Yongmei
Li, Yuexin
Zhong, Yongping
Pei, Min
Long, Jing
Dong, Xingchen
Chen, Yi-Li
Wang, Qi
Wang, Guifeng
Gold, Bruce G.
Vandenbark, Arthur A.
Neve, Kim A.
Offner, Halina
Wang, Chunhe
description Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.
doi_str_mv 10.1016/j.lfs.2022.120383
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320522000832</els_id><sourcerecordid>2638089115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3</originalsourceid><addsrcrecordid>eNp9kVFr2zAUhcXYaLK2P2AvQ7BnZ1eSZVsMBiW0a1mhUNpnIctyrGBbniSH5N9XIV3ZXvokuDr33MP5EPpCYEWAFN-3q74NKwqUrggFVrEPaEmqUmRQMPIRLQFonjEKfIE-h7AFAM5LdoYWjJOcVbRcoubp4KfOhWhHfCXw5F00Ogas9m4MOA3NfjLeDmaMqsdqjs4OwzwabEZtpk71bjiY3kYbcOy8mzcdVjranYrWjdi1-Prxd7hAn1rVB3P5-p6j55vrp_Vtdv_w6259dZ_pvBQx04JTxRtNRAG0qgVjCkqjCNOgKavrvORE04LptmV1CZzRmnOW54Uoa8Vbzc7Rz5PvNNeDaXQK7VUvp5Rf-YN0ysr_f0bbyY3byUqk-qBKBt9eDbz7M5sQ5dbNfkyZZbpbQSUI4UlFTirtXQjetG8XCMgjGLmVCYw8gpEnMGnn67_R3jb-kkiCHyeBSQXtrPEyaHssubE-EZGNs-_YvwAfeKBt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638089115</pqid></control><display><type>article</type><title>Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs</title><source>ScienceDirect Journals</source><creator>Dai, Xiaodong ; Wang, Yongmei ; Li, Yuexin ; Zhong, Yongping ; Pei, Min ; Long, Jing ; Dong, Xingchen ; Chen, Yi-Li ; Wang, Qi ; Wang, Guifeng ; Gold, Bruce G. ; Vandenbark, Arthur A. ; Neve, Kim A. ; Offner, Halina ; Wang, Chunhe</creator><creatorcontrib>Dai, Xiaodong ; Wang, Yongmei ; Li, Yuexin ; Zhong, Yongping ; Pei, Min ; Long, Jing ; Dong, Xingchen ; Chen, Yi-Li ; Wang, Qi ; Wang, Guifeng ; Gold, Bruce G. ; Vandenbark, Arthur A. ; Neve, Kim A. ; Offner, Halina ; Wang, Chunhe</creatorcontrib><description>Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2022.120383</identifier><identifier>PMID: 35143827</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Axonogenesis ; Axons ; Axons - drug effects ; Biomarkers ; Disease Models, Animal ; Encephalomyelitis ; Encephalomyelitis, Autoimmune, Experimental - etiology ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - pathology ; Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control ; Experimental allergic encephalomyelitis ; Experimental autoimmune encephalomyelitis (EAE) ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Female ; GAP-43 protein ; Gene Expression Regulation - drug effects ; Growth factors ; Health services ; Humans ; Kinases ; Mice ; Mice, Inbred C57BL ; MPP ; Multiple sclerosis (MS) ; Neuroblastoma ; Neuroblastoma - drug therapy ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Neuroblastoma cells ; Neurodegenerative diseases ; Neurotoxins ; Oligodendrocyte-myelin glycoprotein ; Oral administration ; Platelet-derived growth factor ; Rats ; Rats, Sprague-Dawley ; Receptors ; Regeneration ; Signs and symptoms ; Substantia nigra ; Toxins ; Tyrphostin A9 ; Tyrphostins - pharmacology</subject><ispartof>Life sciences (1973), 2022-04, Vol.294, p.120383-120383, Article 120383</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3</citedby><cites>FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35143827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Xiaodong</creatorcontrib><creatorcontrib>Wang, Yongmei</creatorcontrib><creatorcontrib>Li, Yuexin</creatorcontrib><creatorcontrib>Zhong, Yongping</creatorcontrib><creatorcontrib>Pei, Min</creatorcontrib><creatorcontrib>Long, Jing</creatorcontrib><creatorcontrib>Dong, Xingchen</creatorcontrib><creatorcontrib>Chen, Yi-Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Guifeng</creatorcontrib><creatorcontrib>Gold, Bruce G.</creatorcontrib><creatorcontrib>Vandenbark, Arthur A.</creatorcontrib><creatorcontrib>Neve, Kim A.</creatorcontrib><creatorcontrib>Offner, Halina</creatorcontrib><creatorcontrib>Wang, Chunhe</creatorcontrib><title>Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.</description><subject>Animals</subject><subject>Axonogenesis</subject><subject>Axons</subject><subject>Axons - drug effects</subject><subject>Biomarkers</subject><subject>Disease Models, Animal</subject><subject>Encephalomyelitis</subject><subject>Encephalomyelitis, Autoimmune, Experimental - etiology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - pathology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Experimental autoimmune encephalomyelitis (EAE)</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Female</subject><subject>GAP-43 protein</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Growth factors</subject><subject>Health services</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MPP</subject><subject>Multiple sclerosis (MS)</subject><subject>Neuroblastoma</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroblastoma cells</subject><subject>Neurodegenerative diseases</subject><subject>Neurotoxins</subject><subject>Oligodendrocyte-myelin glycoprotein</subject><subject>Oral administration</subject><subject>Platelet-derived growth factor</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Regeneration</subject><subject>Signs and symptoms</subject><subject>Substantia nigra</subject><subject>Toxins</subject><subject>Tyrphostin A9</subject><subject>Tyrphostins - pharmacology</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kVFr2zAUhcXYaLK2P2AvQ7BnZ1eSZVsMBiW0a1mhUNpnIctyrGBbniSH5N9XIV3ZXvokuDr33MP5EPpCYEWAFN-3q74NKwqUrggFVrEPaEmqUmRQMPIRLQFonjEKfIE-h7AFAM5LdoYWjJOcVbRcoubp4KfOhWhHfCXw5F00Ogas9m4MOA3NfjLeDmaMqsdqjs4OwzwabEZtpk71bjiY3kYbcOy8mzcdVjranYrWjdi1-Prxd7hAn1rVB3P5-p6j55vrp_Vtdv_w6259dZ_pvBQx04JTxRtNRAG0qgVjCkqjCNOgKavrvORE04LptmV1CZzRmnOW54Uoa8Vbzc7Rz5PvNNeDaXQK7VUvp5Rf-YN0ysr_f0bbyY3byUqk-qBKBt9eDbz7M5sQ5dbNfkyZZbpbQSUI4UlFTirtXQjetG8XCMgjGLmVCYw8gpEnMGnn67_R3jb-kkiCHyeBSQXtrPEyaHssubE-EZGNs-_YvwAfeKBt</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Dai, Xiaodong</creator><creator>Wang, Yongmei</creator><creator>Li, Yuexin</creator><creator>Zhong, Yongping</creator><creator>Pei, Min</creator><creator>Long, Jing</creator><creator>Dong, Xingchen</creator><creator>Chen, Yi-Li</creator><creator>Wang, Qi</creator><creator>Wang, Guifeng</creator><creator>Gold, Bruce G.</creator><creator>Vandenbark, Arthur A.</creator><creator>Neve, Kim A.</creator><creator>Offner, Halina</creator><creator>Wang, Chunhe</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20220401</creationdate><title>Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs</title><author>Dai, Xiaodong ; Wang, Yongmei ; Li, Yuexin ; Zhong, Yongping ; Pei, Min ; Long, Jing ; Dong, Xingchen ; Chen, Yi-Li ; Wang, Qi ; Wang, Guifeng ; Gold, Bruce G. ; Vandenbark, Arthur A. ; Neve, Kim A. ; Offner, Halina ; Wang, Chunhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Axonogenesis</topic><topic>Axons</topic><topic>Axons - drug effects</topic><topic>Biomarkers</topic><topic>Disease Models, Animal</topic><topic>Encephalomyelitis</topic><topic>Encephalomyelitis, Autoimmune, Experimental - etiology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - pathology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Experimental autoimmune encephalomyelitis (EAE)</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Female</topic><topic>GAP-43 protein</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Growth factors</topic><topic>Health services</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MPP</topic><topic>Multiple sclerosis (MS)</topic><topic>Neuroblastoma</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroblastoma cells</topic><topic>Neurodegenerative diseases</topic><topic>Neurotoxins</topic><topic>Oligodendrocyte-myelin glycoprotein</topic><topic>Oral administration</topic><topic>Platelet-derived growth factor</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Regeneration</topic><topic>Signs and symptoms</topic><topic>Substantia nigra</topic><topic>Toxins</topic><topic>Tyrphostin A9</topic><topic>Tyrphostins - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xiaodong</creatorcontrib><creatorcontrib>Wang, Yongmei</creatorcontrib><creatorcontrib>Li, Yuexin</creatorcontrib><creatorcontrib>Zhong, Yongping</creatorcontrib><creatorcontrib>Pei, Min</creatorcontrib><creatorcontrib>Long, Jing</creatorcontrib><creatorcontrib>Dong, Xingchen</creatorcontrib><creatorcontrib>Chen, Yi-Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Guifeng</creatorcontrib><creatorcontrib>Gold, Bruce G.</creatorcontrib><creatorcontrib>Vandenbark, Arthur A.</creatorcontrib><creatorcontrib>Neve, Kim A.</creatorcontrib><creatorcontrib>Offner, Halina</creatorcontrib><creatorcontrib>Wang, Chunhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xiaodong</au><au>Wang, Yongmei</au><au>Li, Yuexin</au><au>Zhong, Yongping</au><au>Pei, Min</au><au>Long, Jing</au><au>Dong, Xingchen</au><au>Chen, Yi-Li</au><au>Wang, Qi</au><au>Wang, Guifeng</au><au>Gold, Bruce G.</au><au>Vandenbark, Arthur A.</au><au>Neve, Kim A.</au><au>Offner, Halina</au><au>Wang, Chunhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>294</volume><spage>120383</spage><epage>120383</epage><pages>120383-120383</pages><artnum>120383</artnum><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>35143827</pmid><doi>10.1016/j.lfs.2022.120383</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2022-04, Vol.294, p.120383-120383, Article 120383
issn 0024-3205
1879-0631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920308
source ScienceDirect Journals
subjects Animals
Axonogenesis
Axons
Axons - drug effects
Biomarkers
Disease Models, Animal
Encephalomyelitis
Encephalomyelitis, Autoimmune, Experimental - etiology
Encephalomyelitis, Autoimmune, Experimental - metabolism
Encephalomyelitis, Autoimmune, Experimental - pathology
Encephalomyelitis, Autoimmune, Experimental - prevention & control
Experimental allergic encephalomyelitis
Experimental autoimmune encephalomyelitis (EAE)
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - genetics
Extracellular Signal-Regulated MAP Kinases - metabolism
Female
GAP-43 protein
Gene Expression Regulation - drug effects
Growth factors
Health services
Humans
Kinases
Mice
Mice, Inbred C57BL
MPP
Multiple sclerosis (MS)
Neuroblastoma
Neuroblastoma - drug therapy
Neuroblastoma - metabolism
Neuroblastoma - pathology
Neuroblastoma cells
Neurodegenerative diseases
Neurotoxins
Oligodendrocyte-myelin glycoprotein
Oral administration
Platelet-derived growth factor
Rats
Rats, Sprague-Dawley
Receptors
Regeneration
Signs and symptoms
Substantia nigra
Toxins
Tyrphostin A9
Tyrphostins - pharmacology
title Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tyrphostin%20A9%20protects%20axons%20in%20experimental%20autoimmune%20encephalomyelitis%20through%20activation%20of%20ERKs&rft.jtitle=Life%20sciences%20(1973)&rft.au=Dai,%20Xiaodong&rft.date=2022-04-01&rft.volume=294&rft.spage=120383&rft.epage=120383&rft.pages=120383-120383&rft.artnum=120383&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2022.120383&rft_dat=%3Cproquest_pubme%3E2638089115%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-c952a5dc196028b933a07ea13c0c23bb4751c263cff3b70532b55344697ba5fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638089115&rft_id=info:pmid/35143827&rfr_iscdi=true