Loading…
Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons
Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation a...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2022-03, Vol.110 (6), p.1068-1083.e5 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3 |
container_end_page | 1083.e5 |
container_issue | 6 |
container_start_page | 1068 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 110 |
creator | Joffe, Max E. Maksymetz, James Luschinger, Joseph R. Dogra, Shalini Ferranti, Anthony S. Luessen, Deborah J. Gallinger, Isabel M. Xiang, Zixiu Branthwaite, Hannah Melugin, Patrick R. Williford, Kellie M. Centanni, Samuel W. Shields, Brenda C. Lindsley, Craig W. Calipari, Erin S. Siciliano, Cody A. Niswender, Colleen M. Tadross, Michael R. Winder, Danny G. Conn, P. Jeffrey |
description | Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
[Display omitted]
•Restraint stress activates PFC SST-INs•Restraint stress enhances excitatory drive onto SST-INs and feedforward inhibition•mGlu5 receptors regulate LTP on SST-INs•SST-mGlu5−/− mice display unique stress-related behavioral adaptations
Joffe et al. demonstrated that restraint stress rapidly potentiates excitatory transmission onto prefrontal cortex somatostatin interneurons in mice, biasing information processing toward amygdala-driven feedforward inhibition. The authors pinpoint metabotropic glutamate mGlu5 receptor plasticity on somatostatin interneurons as an essential mediator of microcircuit modifications and discrete behavioral adaptations following acute stress. |
doi_str_mv | 10.1016/j.neuron.2021.12.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321010448</els_id><sourcerecordid>2621656611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3</originalsourceid><addsrcrecordid>eNp9UcFu1DAUtBCILoU_4OAjlwQ_J3biC1JVQUGqxAXOluO87HqV2MF2qvYj-Od6tSsQF05Pem8845kh5D2wGhjIj8fa4xaDrznjUAOvGe9ekB0w1VUtKPWS7FivZCV511yRNykdGYNWKHhNrhrBWtE0_Y78vrFbRhox5Wicz7RMTKksRhfR5kTXiFORyWamNsSMj9S6aDeX6bR5m13wNB9i2PYHutzNmyhPLa45RLrOJmVnXX6iBZTCYnJI2WTnK3xcTzLO72kRxXi2kt6SV5OZE767zGvy88vnH7dfq_vvd99ub-4r27YsV60dxNgPk7CcDYZPSjaiVyChBYETCC5Zjw3jIwfVKtFZNkxWgMRu4KpTQ3NNPp15121YcLToi_tZr9EtJj7pYJz-9-LdQe_Dg-5Vw0TPC8GHC0EMv7YSnl5csjjPxmPYkuaSgxRSAhRoe4baGFIqYf6RAaZPTeqjPtvXpyY1cF2a_PtFLDk8OIw6WYfeXnrRY3D_J3gGBmitvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621656611</pqid></control><display><type>article</type><title>Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Joffe, Max E. ; Maksymetz, James ; Luschinger, Joseph R. ; Dogra, Shalini ; Ferranti, Anthony S. ; Luessen, Deborah J. ; Gallinger, Isabel M. ; Xiang, Zixiu ; Branthwaite, Hannah ; Melugin, Patrick R. ; Williford, Kellie M. ; Centanni, Samuel W. ; Shields, Brenda C. ; Lindsley, Craig W. ; Calipari, Erin S. ; Siciliano, Cody A. ; Niswender, Colleen M. ; Tadross, Michael R. ; Winder, Danny G. ; Conn, P. Jeffrey</creator><creatorcontrib>Joffe, Max E. ; Maksymetz, James ; Luschinger, Joseph R. ; Dogra, Shalini ; Ferranti, Anthony S. ; Luessen, Deborah J. ; Gallinger, Isabel M. ; Xiang, Zixiu ; Branthwaite, Hannah ; Melugin, Patrick R. ; Williford, Kellie M. ; Centanni, Samuel W. ; Shields, Brenda C. ; Lindsley, Craig W. ; Calipari, Erin S. ; Siciliano, Cody A. ; Niswender, Colleen M. ; Tadross, Michael R. ; Winder, Danny G. ; Conn, P. Jeffrey</creatorcontrib><description>Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
[Display omitted]
•Restraint stress activates PFC SST-INs•Restraint stress enhances excitatory drive onto SST-INs and feedforward inhibition•mGlu5 receptors regulate LTP on SST-INs•SST-mGlu5−/− mice display unique stress-related behavioral adaptations
Joffe et al. demonstrated that restraint stress rapidly potentiates excitatory transmission onto prefrontal cortex somatostatin interneurons in mice, biasing information processing toward amygdala-driven feedforward inhibition. The authors pinpoint metabotropic glutamate mGlu5 receptor plasticity on somatostatin interneurons as an essential mediator of microcircuit modifications and discrete behavioral adaptations following acute stress.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.12.027</identifier><identifier>PMID: 35045338</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>antidepressant ; Ca2+-permeable AMPA receptor ; DART ; GABA ; GluA2-lacking AMPA receptor ; GPCR ; metabotropic glutamate receptor ; motivation ; optogenetics ; working memory</subject><ispartof>Neuron (Cambridge, Mass.), 2022-03, Vol.110 (6), p.1068-1083.e5</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3</citedby><cites>FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3</cites><orcidid>0000-0001-9036-2686 ; 0000-0003-2363-0323 ; 0000-0003-4882-2049 ; 0000-0002-7405-6459 ; 0000-0002-6748-886X ; 0000-0002-3941-7677 ; 0000-0003-0737-7620 ; 0000-0001-8577-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Joffe, Max E.</creatorcontrib><creatorcontrib>Maksymetz, James</creatorcontrib><creatorcontrib>Luschinger, Joseph R.</creatorcontrib><creatorcontrib>Dogra, Shalini</creatorcontrib><creatorcontrib>Ferranti, Anthony S.</creatorcontrib><creatorcontrib>Luessen, Deborah J.</creatorcontrib><creatorcontrib>Gallinger, Isabel M.</creatorcontrib><creatorcontrib>Xiang, Zixiu</creatorcontrib><creatorcontrib>Branthwaite, Hannah</creatorcontrib><creatorcontrib>Melugin, Patrick R.</creatorcontrib><creatorcontrib>Williford, Kellie M.</creatorcontrib><creatorcontrib>Centanni, Samuel W.</creatorcontrib><creatorcontrib>Shields, Brenda C.</creatorcontrib><creatorcontrib>Lindsley, Craig W.</creatorcontrib><creatorcontrib>Calipari, Erin S.</creatorcontrib><creatorcontrib>Siciliano, Cody A.</creatorcontrib><creatorcontrib>Niswender, Colleen M.</creatorcontrib><creatorcontrib>Tadross, Michael R.</creatorcontrib><creatorcontrib>Winder, Danny G.</creatorcontrib><creatorcontrib>Conn, P. Jeffrey</creatorcontrib><title>Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons</title><title>Neuron (Cambridge, Mass.)</title><description>Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
[Display omitted]
•Restraint stress activates PFC SST-INs•Restraint stress enhances excitatory drive onto SST-INs and feedforward inhibition•mGlu5 receptors regulate LTP on SST-INs•SST-mGlu5−/− mice display unique stress-related behavioral adaptations
Joffe et al. demonstrated that restraint stress rapidly potentiates excitatory transmission onto prefrontal cortex somatostatin interneurons in mice, biasing information processing toward amygdala-driven feedforward inhibition. The authors pinpoint metabotropic glutamate mGlu5 receptor plasticity on somatostatin interneurons as an essential mediator of microcircuit modifications and discrete behavioral adaptations following acute stress.</description><subject>antidepressant</subject><subject>Ca2+-permeable AMPA receptor</subject><subject>DART</subject><subject>GABA</subject><subject>GluA2-lacking AMPA receptor</subject><subject>GPCR</subject><subject>metabotropic glutamate receptor</subject><subject>motivation</subject><subject>optogenetics</subject><subject>working memory</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAUtBCILoU_4OAjlwQ_J3biC1JVQUGqxAXOluO87HqV2MF2qvYj-Od6tSsQF05Pem8845kh5D2wGhjIj8fa4xaDrznjUAOvGe9ekB0w1VUtKPWS7FivZCV511yRNykdGYNWKHhNrhrBWtE0_Y78vrFbRhox5Wicz7RMTKksRhfR5kTXiFORyWamNsSMj9S6aDeX6bR5m13wNB9i2PYHutzNmyhPLa45RLrOJmVnXX6iBZTCYnJI2WTnK3xcTzLO72kRxXi2kt6SV5OZE767zGvy88vnH7dfq_vvd99ub-4r27YsV60dxNgPk7CcDYZPSjaiVyChBYETCC5Zjw3jIwfVKtFZNkxWgMRu4KpTQ3NNPp15121YcLToi_tZr9EtJj7pYJz-9-LdQe_Dg-5Vw0TPC8GHC0EMv7YSnl5csjjPxmPYkuaSgxRSAhRoe4baGFIqYf6RAaZPTeqjPtvXpyY1cF2a_PtFLDk8OIw6WYfeXnrRY3D_J3gGBmitvA</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Joffe, Max E.</creator><creator>Maksymetz, James</creator><creator>Luschinger, Joseph R.</creator><creator>Dogra, Shalini</creator><creator>Ferranti, Anthony S.</creator><creator>Luessen, Deborah J.</creator><creator>Gallinger, Isabel M.</creator><creator>Xiang, Zixiu</creator><creator>Branthwaite, Hannah</creator><creator>Melugin, Patrick R.</creator><creator>Williford, Kellie M.</creator><creator>Centanni, Samuel W.</creator><creator>Shields, Brenda C.</creator><creator>Lindsley, Craig W.</creator><creator>Calipari, Erin S.</creator><creator>Siciliano, Cody A.</creator><creator>Niswender, Colleen M.</creator><creator>Tadross, Michael R.</creator><creator>Winder, Danny G.</creator><creator>Conn, P. Jeffrey</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9036-2686</orcidid><orcidid>https://orcid.org/0000-0003-2363-0323</orcidid><orcidid>https://orcid.org/0000-0003-4882-2049</orcidid><orcidid>https://orcid.org/0000-0002-7405-6459</orcidid><orcidid>https://orcid.org/0000-0002-6748-886X</orcidid><orcidid>https://orcid.org/0000-0002-3941-7677</orcidid><orcidid>https://orcid.org/0000-0003-0737-7620</orcidid><orcidid>https://orcid.org/0000-0001-8577-2947</orcidid></search><sort><creationdate>20220316</creationdate><title>Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons</title><author>Joffe, Max E. ; Maksymetz, James ; Luschinger, Joseph R. ; Dogra, Shalini ; Ferranti, Anthony S. ; Luessen, Deborah J. ; Gallinger, Isabel M. ; Xiang, Zixiu ; Branthwaite, Hannah ; Melugin, Patrick R. ; Williford, Kellie M. ; Centanni, Samuel W. ; Shields, Brenda C. ; Lindsley, Craig W. ; Calipari, Erin S. ; Siciliano, Cody A. ; Niswender, Colleen M. ; Tadross, Michael R. ; Winder, Danny G. ; Conn, P. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antidepressant</topic><topic>Ca2+-permeable AMPA receptor</topic><topic>DART</topic><topic>GABA</topic><topic>GluA2-lacking AMPA receptor</topic><topic>GPCR</topic><topic>metabotropic glutamate receptor</topic><topic>motivation</topic><topic>optogenetics</topic><topic>working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joffe, Max E.</creatorcontrib><creatorcontrib>Maksymetz, James</creatorcontrib><creatorcontrib>Luschinger, Joseph R.</creatorcontrib><creatorcontrib>Dogra, Shalini</creatorcontrib><creatorcontrib>Ferranti, Anthony S.</creatorcontrib><creatorcontrib>Luessen, Deborah J.</creatorcontrib><creatorcontrib>Gallinger, Isabel M.</creatorcontrib><creatorcontrib>Xiang, Zixiu</creatorcontrib><creatorcontrib>Branthwaite, Hannah</creatorcontrib><creatorcontrib>Melugin, Patrick R.</creatorcontrib><creatorcontrib>Williford, Kellie M.</creatorcontrib><creatorcontrib>Centanni, Samuel W.</creatorcontrib><creatorcontrib>Shields, Brenda C.</creatorcontrib><creatorcontrib>Lindsley, Craig W.</creatorcontrib><creatorcontrib>Calipari, Erin S.</creatorcontrib><creatorcontrib>Siciliano, Cody A.</creatorcontrib><creatorcontrib>Niswender, Colleen M.</creatorcontrib><creatorcontrib>Tadross, Michael R.</creatorcontrib><creatorcontrib>Winder, Danny G.</creatorcontrib><creatorcontrib>Conn, P. Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joffe, Max E.</au><au>Maksymetz, James</au><au>Luschinger, Joseph R.</au><au>Dogra, Shalini</au><au>Ferranti, Anthony S.</au><au>Luessen, Deborah J.</au><au>Gallinger, Isabel M.</au><au>Xiang, Zixiu</au><au>Branthwaite, Hannah</au><au>Melugin, Patrick R.</au><au>Williford, Kellie M.</au><au>Centanni, Samuel W.</au><au>Shields, Brenda C.</au><au>Lindsley, Craig W.</au><au>Calipari, Erin S.</au><au>Siciliano, Cody A.</au><au>Niswender, Colleen M.</au><au>Tadross, Michael R.</au><au>Winder, Danny G.</au><au>Conn, P. Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><date>2022-03-16</date><risdate>2022</risdate><volume>110</volume><issue>6</issue><spage>1068</spage><epage>1083.e5</epage><pages>1068-1083.e5</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
[Display omitted]
•Restraint stress activates PFC SST-INs•Restraint stress enhances excitatory drive onto SST-INs and feedforward inhibition•mGlu5 receptors regulate LTP on SST-INs•SST-mGlu5−/− mice display unique stress-related behavioral adaptations
Joffe et al. demonstrated that restraint stress rapidly potentiates excitatory transmission onto prefrontal cortex somatostatin interneurons in mice, biasing information processing toward amygdala-driven feedforward inhibition. The authors pinpoint metabotropic glutamate mGlu5 receptor plasticity on somatostatin interneurons as an essential mediator of microcircuit modifications and discrete behavioral adaptations following acute stress.</abstract><pub>Elsevier Inc</pub><pmid>35045338</pmid><doi>10.1016/j.neuron.2021.12.027</doi><orcidid>https://orcid.org/0000-0001-9036-2686</orcidid><orcidid>https://orcid.org/0000-0003-2363-0323</orcidid><orcidid>https://orcid.org/0000-0003-4882-2049</orcidid><orcidid>https://orcid.org/0000-0002-7405-6459</orcidid><orcidid>https://orcid.org/0000-0002-6748-886X</orcidid><orcidid>https://orcid.org/0000-0002-3941-7677</orcidid><orcidid>https://orcid.org/0000-0003-0737-7620</orcidid><orcidid>https://orcid.org/0000-0001-8577-2947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2022-03, Vol.110 (6), p.1068-1083.e5 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930582 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | antidepressant Ca2+-permeable AMPA receptor DART GABA GluA2-lacking AMPA receptor GPCR metabotropic glutamate receptor motivation optogenetics working memory |
title | Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20restraint%20stress%20redirects%20prefrontal%20cortex%20circuit%20function%20through%20mGlu5%20receptor%20plasticity%20on%20somatostatin-expressing%20interneurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Joffe,%20Max%20E.&rft.date=2022-03-16&rft.volume=110&rft.issue=6&rft.spage=1068&rft.epage=1083.e5&rft.pages=1068-1083.e5&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.12.027&rft_dat=%3Cproquest_pubme%3E2621656611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-4cb5d8bf5c20ba2f963589161415ef152608e302d2194957c0bfc516e7b2979b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621656611&rft_id=info:pmid/35045338&rfr_iscdi=true |