Loading…
Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps
Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2022-04, Vol.28 (4), p.1955-1966 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3 |
container_end_page | 1966 |
container_issue | 4 |
container_start_page | 1955 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Athawale, Tushar M. Maljovec, Dan Yan, Lin Johnson, Chris R. Pascucci, Valerio Wang, Bei |
description | Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets. |
doi_str_mv | 10.1109/TVCG.2020.3022359 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187994</ieee_id><sourcerecordid>2633042028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQQC0EoqXwAxASsuDCZYO_dm1fkFAoBakVhza5Wo533LratcPaiyi_HkcJEXDySPNmPDMPoZeULCgl-v3NenmxYISRBSeM8VY_QqdUC9qQlnSPa0ykbFjHuhP0LOd7QqgQSj9FJ5wpLVVHT9F6FR1MxYZYHvA65NkO4ZctIUWcPGaf8FWaMuBlGrcD_MTnMcO4GSDjVQ7xFl-XyuYSnB3w9TyOdnrAV3abn6Mn3g4ZXhzeM7T6fH6z_NJcfrv4uvx42TghRWk0Y5I72ionfG9Za7Vm3HuvtAWrQG_anoPXVkjWa-ih407TXgnpJSOud_wMfdj33c6bEXoHsUx2MNsp7EYxyQbzbyaGO3ObfhiledtyWhu82TdIdQuTXSjg7lyKEVwxVCvSEVKhd4dfpvR9hlzMGLKDYbAR0pwNE4Iyxet1K_r2P_Q-zVOsNzCs45yIqktViu4pN6WcJ_DHiSkxO7Vmp9bs1JqD2lrz-u9VjxV_XFbg1R4IAHBMa6qk1oL_BtCbqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633042028</pqid></control><display><type>article</type><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei</creator><creatorcontrib>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3022359</identifier><identifier>PMID: 32897861</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Color ; Computer Science ; Data visualization ; Eddy simulation ; Entropy ; Gradient flow ; Morse complexes ; Probabilistic logic ; Scalars ; Scientific visualization ; Statistical analysis ; topological data analysis ; Topology ; Two dimensional displays ; Uncertainty ; uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1955-1966</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</citedby><cites>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</cites><orcidid>0000-0001-7017-0329 ; 0000-0002-9240-0700 ; 0000-0003-3163-6274 ; 0000-0001-5673-5338 ; 0000000292400700 ; 0000000331636274 ; 0000000170170329 ; 0000000156735338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32897861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1980600$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Maljovec, Dan</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</description><subject>Color</subject><subject>Computer Science</subject><subject>Data visualization</subject><subject>Eddy simulation</subject><subject>Entropy</subject><subject>Gradient flow</subject><subject>Morse complexes</subject><subject>Probabilistic logic</subject><subject>Scalars</subject><subject>Scientific visualization</subject><subject>Statistical analysis</subject><subject>topological data analysis</subject><subject>Topology</subject><subject>Two dimensional displays</subject><subject>Uncertainty</subject><subject>uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQQC0EoqXwAxASsuDCZYO_dm1fkFAoBakVhza5Wo533LratcPaiyi_HkcJEXDySPNmPDMPoZeULCgl-v3NenmxYISRBSeM8VY_QqdUC9qQlnSPa0ykbFjHuhP0LOd7QqgQSj9FJ5wpLVVHT9F6FR1MxYZYHvA65NkO4ZctIUWcPGaf8FWaMuBlGrcD_MTnMcO4GSDjVQ7xFl-XyuYSnB3w9TyOdnrAV3abn6Mn3g4ZXhzeM7T6fH6z_NJcfrv4uvx42TghRWk0Y5I72ionfG9Za7Vm3HuvtAWrQG_anoPXVkjWa-ih407TXgnpJSOud_wMfdj33c6bEXoHsUx2MNsp7EYxyQbzbyaGO3ObfhiledtyWhu82TdIdQuTXSjg7lyKEVwxVCvSEVKhd4dfpvR9hlzMGLKDYbAR0pwNE4Iyxet1K_r2P_Q-zVOsNzCs45yIqktViu4pN6WcJ_DHiSkxO7Vmp9bs1JqD2lrz-u9VjxV_XFbg1R4IAHBMa6qk1oL_BtCbqNM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Athawale, Tushar M.</creator><creator>Maljovec, Dan</creator><creator>Yan, Lin</creator><creator>Johnson, Chris R.</creator><creator>Pascucci, Valerio</creator><creator>Wang, Bei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7017-0329</orcidid><orcidid>https://orcid.org/0000-0002-9240-0700</orcidid><orcidid>https://orcid.org/0000-0003-3163-6274</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid><orcidid>https://orcid.org/0000000292400700</orcidid><orcidid>https://orcid.org/0000000331636274</orcidid><orcidid>https://orcid.org/0000000170170329</orcidid><orcidid>https://orcid.org/0000000156735338</orcidid></search><sort><creationdate>20220401</creationdate><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><author>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Computer Science</topic><topic>Data visualization</topic><topic>Eddy simulation</topic><topic>Entropy</topic><topic>Gradient flow</topic><topic>Morse complexes</topic><topic>Probabilistic logic</topic><topic>Scalars</topic><topic>Scientific visualization</topic><topic>Statistical analysis</topic><topic>topological data analysis</topic><topic>Topology</topic><topic>Two dimensional displays</topic><topic>Uncertainty</topic><topic>uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Maljovec, Dan</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athawale, Tushar M.</au><au>Maljovec, Dan</au><au>Yan, Lin</au><au>Johnson, Chris R.</au><au>Pascucci, Valerio</au><au>Wang, Bei</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1955</spage><epage>1966</epage><pages>1955-1966</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32897861</pmid><doi>10.1109/TVCG.2020.3022359</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7017-0329</orcidid><orcidid>https://orcid.org/0000-0002-9240-0700</orcidid><orcidid>https://orcid.org/0000-0003-3163-6274</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid><orcidid>https://orcid.org/0000000292400700</orcidid><orcidid>https://orcid.org/0000000331636274</orcidid><orcidid>https://orcid.org/0000000170170329</orcidid><orcidid>https://orcid.org/0000000156735338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1955-1966 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935531 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Color Computer Science Data visualization Eddy simulation Entropy Gradient flow Morse complexes Probabilistic logic Scalars Scientific visualization Statistical analysis topological data analysis Topology Two dimensional displays Uncertainty uncertainty visualization Visualization |
title | Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Visualization%20of%202D%20Morse%20Complex%20Ensembles%20Using%20Statistical%20Summary%20Maps&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Athawale,%20Tushar%20M.&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2022-04-01&rft.volume=28&rft.issue=4&rft.spage=1955&rft.epage=1966&rft.pages=1955-1966&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3022359&rft_dat=%3Cproquest_pubme%3E2633042028%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633042028&rft_id=info:pmid/32897861&rft_ieee_id=9187994&rfr_iscdi=true |