Loading…

Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps

Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2022-04, Vol.28 (4), p.1955-1966
Main Authors: Athawale, Tushar M., Maljovec, Dan, Yan, Lin, Johnson, Chris R., Pascucci, Valerio, Wang, Bei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3
cites cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3
container_end_page 1966
container_issue 4
container_start_page 1955
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Athawale, Tushar M.
Maljovec, Dan
Yan, Lin
Johnson, Chris R.
Pascucci, Valerio
Wang, Bei
description Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.
doi_str_mv 10.1109/TVCG.2020.3022359
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9187994</ieee_id><sourcerecordid>2633042028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQQC0EoqXwAxASsuDCZYO_dm1fkFAoBakVhza5Wo533LratcPaiyi_HkcJEXDySPNmPDMPoZeULCgl-v3NenmxYISRBSeM8VY_QqdUC9qQlnSPa0ykbFjHuhP0LOd7QqgQSj9FJ5wpLVVHT9F6FR1MxYZYHvA65NkO4ZctIUWcPGaf8FWaMuBlGrcD_MTnMcO4GSDjVQ7xFl-XyuYSnB3w9TyOdnrAV3abn6Mn3g4ZXhzeM7T6fH6z_NJcfrv4uvx42TghRWk0Y5I72ionfG9Za7Vm3HuvtAWrQG_anoPXVkjWa-ih407TXgnpJSOud_wMfdj33c6bEXoHsUx2MNsp7EYxyQbzbyaGO3ObfhiledtyWhu82TdIdQuTXSjg7lyKEVwxVCvSEVKhd4dfpvR9hlzMGLKDYbAR0pwNE4Iyxet1K_r2P_Q-zVOsNzCs45yIqktViu4pN6WcJ_DHiSkxO7Vmp9bs1JqD2lrz-u9VjxV_XFbg1R4IAHBMa6qk1oL_BtCbqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633042028</pqid></control><display><type>article</type><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei</creator><creatorcontrib>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3022359</identifier><identifier>PMID: 32897861</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Color ; Computer Science ; Data visualization ; Eddy simulation ; Entropy ; Gradient flow ; Morse complexes ; Probabilistic logic ; Scalars ; Scientific visualization ; Statistical analysis ; topological data analysis ; Topology ; Two dimensional displays ; Uncertainty ; uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1955-1966</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</citedby><cites>FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</cites><orcidid>0000-0001-7017-0329 ; 0000-0002-9240-0700 ; 0000-0003-3163-6274 ; 0000-0001-5673-5338 ; 0000000292400700 ; 0000000331636274 ; 0000000170170329 ; 0000000156735338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9187994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32897861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1980600$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Maljovec, Dan</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</description><subject>Color</subject><subject>Computer Science</subject><subject>Data visualization</subject><subject>Eddy simulation</subject><subject>Entropy</subject><subject>Gradient flow</subject><subject>Morse complexes</subject><subject>Probabilistic logic</subject><subject>Scalars</subject><subject>Scientific visualization</subject><subject>Statistical analysis</subject><subject>topological data analysis</subject><subject>Topology</subject><subject>Two dimensional displays</subject><subject>Uncertainty</subject><subject>uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQQC0EoqXwAxASsuDCZYO_dm1fkFAoBakVhza5Wo533LratcPaiyi_HkcJEXDySPNmPDMPoZeULCgl-v3NenmxYISRBSeM8VY_QqdUC9qQlnSPa0ykbFjHuhP0LOd7QqgQSj9FJ5wpLVVHT9F6FR1MxYZYHvA65NkO4ZctIUWcPGaf8FWaMuBlGrcD_MTnMcO4GSDjVQ7xFl-XyuYSnB3w9TyOdnrAV3abn6Mn3g4ZXhzeM7T6fH6z_NJcfrv4uvx42TghRWk0Y5I72ionfG9Za7Vm3HuvtAWrQG_anoPXVkjWa-ih407TXgnpJSOud_wMfdj33c6bEXoHsUx2MNsp7EYxyQbzbyaGO3ObfhiledtyWhu82TdIdQuTXSjg7lyKEVwxVCvSEVKhd4dfpvR9hlzMGLKDYbAR0pwNE4Iyxet1K_r2P_Q-zVOsNzCs45yIqktViu4pN6WcJ_DHiSkxO7Vmp9bs1JqD2lrz-u9VjxV_XFbg1R4IAHBMa6qk1oL_BtCbqNM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Athawale, Tushar M.</creator><creator>Maljovec, Dan</creator><creator>Yan, Lin</creator><creator>Johnson, Chris R.</creator><creator>Pascucci, Valerio</creator><creator>Wang, Bei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7017-0329</orcidid><orcidid>https://orcid.org/0000-0002-9240-0700</orcidid><orcidid>https://orcid.org/0000-0003-3163-6274</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid><orcidid>https://orcid.org/0000000292400700</orcidid><orcidid>https://orcid.org/0000000331636274</orcidid><orcidid>https://orcid.org/0000000170170329</orcidid><orcidid>https://orcid.org/0000000156735338</orcidid></search><sort><creationdate>20220401</creationdate><title>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</title><author>Athawale, Tushar M. ; Maljovec, Dan ; Yan, Lin ; Johnson, Chris R. ; Pascucci, Valerio ; Wang, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Computer Science</topic><topic>Data visualization</topic><topic>Eddy simulation</topic><topic>Entropy</topic><topic>Gradient flow</topic><topic>Morse complexes</topic><topic>Probabilistic logic</topic><topic>Scalars</topic><topic>Scientific visualization</topic><topic>Statistical analysis</topic><topic>topological data analysis</topic><topic>Topology</topic><topic>Two dimensional displays</topic><topic>Uncertainty</topic><topic>uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athawale, Tushar M.</creatorcontrib><creatorcontrib>Maljovec, Dan</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Johnson, Chris R.</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athawale, Tushar M.</au><au>Maljovec, Dan</au><au>Yan, Lin</au><au>Johnson, Chris R.</au><au>Pascucci, Valerio</au><au>Wang, Bei</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1955</spage><epage>1966</epage><pages>1955-1966</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map , the significance map , and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32897861</pmid><doi>10.1109/TVCG.2020.3022359</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7017-0329</orcidid><orcidid>https://orcid.org/0000-0002-9240-0700</orcidid><orcidid>https://orcid.org/0000-0003-3163-6274</orcidid><orcidid>https://orcid.org/0000-0001-5673-5338</orcidid><orcidid>https://orcid.org/0000000292400700</orcidid><orcidid>https://orcid.org/0000000331636274</orcidid><orcidid>https://orcid.org/0000000170170329</orcidid><orcidid>https://orcid.org/0000000156735338</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1955-1966
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935531
source IEEE Electronic Library (IEL) Journals
subjects Color
Computer Science
Data visualization
Eddy simulation
Entropy
Gradient flow
Morse complexes
Probabilistic logic
Scalars
Scientific visualization
Statistical analysis
topological data analysis
Topology
Two dimensional displays
Uncertainty
uncertainty visualization
Visualization
title Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Visualization%20of%202D%20Morse%20Complex%20Ensembles%20Using%20Statistical%20Summary%20Maps&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Athawale,%20Tushar%20M.&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2022-04-01&rft.volume=28&rft.issue=4&rft.spage=1955&rft.epage=1966&rft.pages=1955-1966&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3022359&rft_dat=%3Cproquest_pubme%3E2633042028%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-92273c158c4fda25a9923fff89aea8e9b5d3ef9a472d9ede63c91d847f720cdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633042028&rft_id=info:pmid/32897861&rft_ieee_id=9187994&rfr_iscdi=true