Loading…

Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints

High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS)...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-03, Vol.119 (12), p.1-10
Main Authors: Huang, Yida, Du, Shaoqian, Liu, Jun, Huang, Weiyi, Liu, Wanshan, Zhang, Mengji, Li, Ning, Wang, Ruimin, Wu, Jiao, Chen, Wei, Jiang, Mengyi, Zhou, Tianhao, Cao, Jing, Yang, Jing, Huang, Lin, Gu, An, Niu, Jingyang, Cao, Yuan, Zong, Wei-Xing, Wang, Xin, Qian, Kun, Wang, Hongxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743
cites cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743
container_end_page 10
container_issue 12
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Huang, Yida
Du, Shaoqian
Liu, Jun
Huang, Weiyi
Liu, Wanshan
Zhang, Mengji
Li, Ning
Wang, Ruimin
Wu, Jiao
Chen, Wei
Jiang, Mengyi
Zhou, Tianhao
Cao, Jing
Yang, Jing
Huang, Lin
Gu, An
Niu, Jingyang
Cao, Yuan
Zong, Wei-Xing
Wang, Xin
Qian, Kun
Wang, Hongxia
description High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.
doi_str_mv 10.1073/pnas.2122245119
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27151053</jstor_id><sourcerecordid>27151053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</originalsourceid><addsrcrecordid>eNpdkc2LFDEQxYMo7uzq2ZMS8OKldyuVZDq5CLK6Kix40YOnkM6kZzJ0J23SLex_b4YZx49TqNSvHu_xCHnB4JpBy2-maMs1MkQUkjH9iKwYaNashYbHZAWAbaMEigtyWcoeALRU8JRccMkBlRYr8v19sNuYSijUxg2dcjpNqadd9rbM1NnofKbdA92F7a6ZfO5THg-ftPi8jHT0s-3SEBztQ9z6POUQ5_KMPOntUPzz03tFvt19-Hr7qbn_8vHz7bv7xgnB5wYFIldr59pOWbtRQlkBuBYbB6omVJx7YJ4rK5FLZ6WSHfYADqVuUbSCX5G3R91p6Ua_cT7O2Q6mmhhtfjDJBvPvJoad2aafpuYXKHkVeHMSyOnH4stsxlCcHwYbfVqKqWZAayEVq-jr_9B9WnKs8Q4UagFcyUrdHCmXUynZ92czDMyhNnOozfyprV68-jvDmf_dUwVeHoF9mVM-77FlkkHN8Avb0Z19</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642940385</pqid></control><display><type>article</type><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><source>PubMed Central</source><creator>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</creator><creatorcontrib>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</creatorcontrib><description>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P &lt; 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2122245119</identifier><identifier>PMID: 35302894</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biomarkers ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - metabolism ; Diagnosis ; Female ; Fingerprints ; Humans ; Ionization ; Lasers ; Machine learning ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Medical prognosis ; Metabolism ; Metabolites ; Nanoparticles ; Physical Sciences ; Prognosis ; Reproducibility of Results</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (12), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Mar 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</citedby><cites>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</cites><orcidid>0000-0002-5122-2418 ; 0000-0001-9725-5170 ; 0000-0001-8033-2387 ; 0000-0002-7930-7210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944253/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944253/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35302894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yida</creatorcontrib><creatorcontrib>Du, Shaoqian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Huang, Weiyi</creatorcontrib><creatorcontrib>Liu, Wanshan</creatorcontrib><creatorcontrib>Zhang, Mengji</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Ruimin</creatorcontrib><creatorcontrib>Wu, Jiao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Mengyi</creatorcontrib><creatorcontrib>Zhou, Tianhao</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Gu, An</creatorcontrib><creatorcontrib>Niu, Jingyang</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zong, Wei-Xing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P &lt; 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</description><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - metabolism</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Fingerprints</subject><subject>Humans</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc2LFDEQxYMo7uzq2ZMS8OKldyuVZDq5CLK6Kix40YOnkM6kZzJ0J23SLex_b4YZx49TqNSvHu_xCHnB4JpBy2-maMs1MkQUkjH9iKwYaNashYbHZAWAbaMEigtyWcoeALRU8JRccMkBlRYr8v19sNuYSijUxg2dcjpNqadd9rbM1NnofKbdA92F7a6ZfO5THg-ftPi8jHT0s-3SEBztQ9z6POUQ5_KMPOntUPzz03tFvt19-Hr7qbn_8vHz7bv7xgnB5wYFIldr59pOWbtRQlkBuBYbB6omVJx7YJ4rK5FLZ6WSHfYADqVuUbSCX5G3R91p6Ua_cT7O2Q6mmhhtfjDJBvPvJoad2aafpuYXKHkVeHMSyOnH4stsxlCcHwYbfVqKqWZAayEVq-jr_9B9WnKs8Q4UagFcyUrdHCmXUynZ92czDMyhNnOozfyprV68-jvDmf_dUwVeHoF9mVM-77FlkkHN8Avb0Z19</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Huang, Yida</creator><creator>Du, Shaoqian</creator><creator>Liu, Jun</creator><creator>Huang, Weiyi</creator><creator>Liu, Wanshan</creator><creator>Zhang, Mengji</creator><creator>Li, Ning</creator><creator>Wang, Ruimin</creator><creator>Wu, Jiao</creator><creator>Chen, Wei</creator><creator>Jiang, Mengyi</creator><creator>Zhou, Tianhao</creator><creator>Cao, Jing</creator><creator>Yang, Jing</creator><creator>Huang, Lin</creator><creator>Gu, An</creator><creator>Niu, Jingyang</creator><creator>Cao, Yuan</creator><creator>Zong, Wei-Xing</creator><creator>Wang, Xin</creator><creator>Qian, Kun</creator><creator>Wang, Hongxia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5122-2418</orcidid><orcidid>https://orcid.org/0000-0001-9725-5170</orcidid><orcidid>https://orcid.org/0000-0001-8033-2387</orcidid><orcidid>https://orcid.org/0000-0002-7930-7210</orcidid></search><sort><creationdate>20220322</creationdate><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><author>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - metabolism</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Fingerprints</topic><topic>Humans</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yida</creatorcontrib><creatorcontrib>Du, Shaoqian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Huang, Weiyi</creatorcontrib><creatorcontrib>Liu, Wanshan</creatorcontrib><creatorcontrib>Zhang, Mengji</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Ruimin</creatorcontrib><creatorcontrib>Wu, Jiao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Mengyi</creatorcontrib><creatorcontrib>Zhou, Tianhao</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Gu, An</creatorcontrib><creatorcontrib>Niu, Jingyang</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zong, Wei-Xing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yida</au><au>Du, Shaoqian</au><au>Liu, Jun</au><au>Huang, Weiyi</au><au>Liu, Wanshan</au><au>Zhang, Mengji</au><au>Li, Ning</au><au>Wang, Ruimin</au><au>Wu, Jiao</au><au>Chen, Wei</au><au>Jiang, Mengyi</au><au>Zhou, Tianhao</au><au>Cao, Jing</au><au>Yang, Jing</au><au>Huang, Lin</au><au>Gu, An</au><au>Niu, Jingyang</au><au>Cao, Yuan</au><au>Zong, Wei-Xing</au><au>Wang, Xin</au><au>Qian, Kun</au><au>Wang, Hongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-03-22</date><risdate>2022</risdate><volume>119</volume><issue>12</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P &lt; 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35302894</pmid><doi>10.1073/pnas.2122245119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5122-2418</orcidid><orcidid>https://orcid.org/0000-0001-9725-5170</orcidid><orcidid>https://orcid.org/0000-0001-8033-2387</orcidid><orcidid>https://orcid.org/0000-0002-7930-7210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (12), p.1-10
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944253
source PubMed Central
subjects Biological Sciences
Biomarkers
Biomarkers, Tumor - metabolism
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - metabolism
Diagnosis
Female
Fingerprints
Humans
Ionization
Lasers
Machine learning
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Medical prognosis
Metabolism
Metabolites
Nanoparticles
Physical Sciences
Prognosis
Reproducibility of Results
title Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20and%20prognosis%20of%20breast%20cancer%20by%20high-performance%20serum%20metabolic%20fingerprints&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huang,%20Yida&rft.date=2022-03-22&rft.volume=119&rft.issue=12&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2122245119&rft_dat=%3Cjstor_pubme%3E27151053%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642940385&rft_id=info:pmid/35302894&rft_jstor_id=27151053&rfr_iscdi=true