Loading…
Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints
High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS)...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-03, Vol.119 (12), p.1-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743 |
container_end_page | 10 |
container_issue | 12 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Huang, Yida Du, Shaoqian Liu, Jun Huang, Weiyi Liu, Wanshan Zhang, Mengji Li, Ning Wang, Ruimin Wu, Jiao Chen, Wei Jiang, Mengyi Zhou, Tianhao Cao, Jing Yang, Jing Huang, Lin Gu, An Niu, Jingyang Cao, Yuan Zong, Wei-Xing Wang, Xin Qian, Kun Wang, Hongxia |
description | High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa. |
doi_str_mv | 10.1073/pnas.2122245119 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27151053</jstor_id><sourcerecordid>27151053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</originalsourceid><addsrcrecordid>eNpdkc2LFDEQxYMo7uzq2ZMS8OKldyuVZDq5CLK6Kix40YOnkM6kZzJ0J23SLex_b4YZx49TqNSvHu_xCHnB4JpBy2-maMs1MkQUkjH9iKwYaNashYbHZAWAbaMEigtyWcoeALRU8JRccMkBlRYr8v19sNuYSijUxg2dcjpNqadd9rbM1NnofKbdA92F7a6ZfO5THg-ftPi8jHT0s-3SEBztQ9z6POUQ5_KMPOntUPzz03tFvt19-Hr7qbn_8vHz7bv7xgnB5wYFIldr59pOWbtRQlkBuBYbB6omVJx7YJ4rK5FLZ6WSHfYADqVuUbSCX5G3R91p6Ua_cT7O2Q6mmhhtfjDJBvPvJoad2aafpuYXKHkVeHMSyOnH4stsxlCcHwYbfVqKqWZAayEVq-jr_9B9WnKs8Q4UagFcyUrdHCmXUynZ92czDMyhNnOozfyprV68-jvDmf_dUwVeHoF9mVM-77FlkkHN8Avb0Z19</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642940385</pqid></control><display><type>article</type><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><source>PubMed Central</source><creator>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</creator><creatorcontrib>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</creatorcontrib><description>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2122245119</identifier><identifier>PMID: 35302894</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biomarkers ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - metabolism ; Diagnosis ; Female ; Fingerprints ; Humans ; Ionization ; Lasers ; Machine learning ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Medical prognosis ; Metabolism ; Metabolites ; Nanoparticles ; Physical Sciences ; Prognosis ; Reproducibility of Results</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (12), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Mar 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</citedby><cites>FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</cites><orcidid>0000-0002-5122-2418 ; 0000-0001-9725-5170 ; 0000-0001-8033-2387 ; 0000-0002-7930-7210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944253/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944253/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35302894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yida</creatorcontrib><creatorcontrib>Du, Shaoqian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Huang, Weiyi</creatorcontrib><creatorcontrib>Liu, Wanshan</creatorcontrib><creatorcontrib>Zhang, Mengji</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Ruimin</creatorcontrib><creatorcontrib>Wu, Jiao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Mengyi</creatorcontrib><creatorcontrib>Zhou, Tianhao</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Gu, An</creatorcontrib><creatorcontrib>Niu, Jingyang</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zong, Wei-Xing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</description><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - metabolism</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Fingerprints</subject><subject>Humans</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc2LFDEQxYMo7uzq2ZMS8OKldyuVZDq5CLK6Kix40YOnkM6kZzJ0J23SLex_b4YZx49TqNSvHu_xCHnB4JpBy2-maMs1MkQUkjH9iKwYaNashYbHZAWAbaMEigtyWcoeALRU8JRccMkBlRYr8v19sNuYSijUxg2dcjpNqadd9rbM1NnofKbdA92F7a6ZfO5THg-ftPi8jHT0s-3SEBztQ9z6POUQ5_KMPOntUPzz03tFvt19-Hr7qbn_8vHz7bv7xgnB5wYFIldr59pOWbtRQlkBuBYbB6omVJx7YJ4rK5FLZ6WSHfYADqVuUbSCX5G3R91p6Ua_cT7O2Q6mmhhtfjDJBvPvJoad2aafpuYXKHkVeHMSyOnH4stsxlCcHwYbfVqKqWZAayEVq-jr_9B9WnKs8Q4UagFcyUrdHCmXUynZ92czDMyhNnOozfyprV68-jvDmf_dUwVeHoF9mVM-77FlkkHN8Avb0Z19</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Huang, Yida</creator><creator>Du, Shaoqian</creator><creator>Liu, Jun</creator><creator>Huang, Weiyi</creator><creator>Liu, Wanshan</creator><creator>Zhang, Mengji</creator><creator>Li, Ning</creator><creator>Wang, Ruimin</creator><creator>Wu, Jiao</creator><creator>Chen, Wei</creator><creator>Jiang, Mengyi</creator><creator>Zhou, Tianhao</creator><creator>Cao, Jing</creator><creator>Yang, Jing</creator><creator>Huang, Lin</creator><creator>Gu, An</creator><creator>Niu, Jingyang</creator><creator>Cao, Yuan</creator><creator>Zong, Wei-Xing</creator><creator>Wang, Xin</creator><creator>Qian, Kun</creator><creator>Wang, Hongxia</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5122-2418</orcidid><orcidid>https://orcid.org/0000-0001-9725-5170</orcidid><orcidid>https://orcid.org/0000-0001-8033-2387</orcidid><orcidid>https://orcid.org/0000-0002-7930-7210</orcidid></search><sort><creationdate>20220322</creationdate><title>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</title><author>Huang, Yida ; Du, Shaoqian ; Liu, Jun ; Huang, Weiyi ; Liu, Wanshan ; Zhang, Mengji ; Li, Ning ; Wang, Ruimin ; Wu, Jiao ; Chen, Wei ; Jiang, Mengyi ; Zhou, Tianhao ; Cao, Jing ; Yang, Jing ; Huang, Lin ; Gu, An ; Niu, Jingyang ; Cao, Yuan ; Zong, Wei-Xing ; Wang, Xin ; Qian, Kun ; Wang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - metabolism</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Fingerprints</topic><topic>Humans</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yida</creatorcontrib><creatorcontrib>Du, Shaoqian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Huang, Weiyi</creatorcontrib><creatorcontrib>Liu, Wanshan</creatorcontrib><creatorcontrib>Zhang, Mengji</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Wang, Ruimin</creatorcontrib><creatorcontrib>Wu, Jiao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Mengyi</creatorcontrib><creatorcontrib>Zhou, Tianhao</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Huang, Lin</creatorcontrib><creatorcontrib>Gu, An</creatorcontrib><creatorcontrib>Niu, Jingyang</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zong, Wei-Xing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yida</au><au>Du, Shaoqian</au><au>Liu, Jun</au><au>Huang, Weiyi</au><au>Liu, Wanshan</au><au>Zhang, Mengji</au><au>Li, Ning</au><au>Wang, Ruimin</au><au>Wu, Jiao</au><au>Chen, Wei</au><au>Jiang, Mengyi</au><au>Zhou, Tianhao</au><au>Cao, Jing</au><au>Yang, Jing</au><au>Huang, Lin</au><au>Gu, An</au><au>Niu, Jingyang</au><au>Cao, Yuan</au><au>Zong, Wei-Xing</au><au>Wang, Xin</au><au>Qian, Kun</au><au>Wang, Hongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-03-22</date><risdate>2022</risdate><volume>119</volume><issue>12</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35302894</pmid><doi>10.1073/pnas.2122245119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5122-2418</orcidid><orcidid>https://orcid.org/0000-0001-9725-5170</orcidid><orcidid>https://orcid.org/0000-0001-8033-2387</orcidid><orcidid>https://orcid.org/0000-0002-7930-7210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (12), p.1-10 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944253 |
source | PubMed Central |
subjects | Biological Sciences Biomarkers Biomarkers, Tumor - metabolism Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - metabolism Diagnosis Female Fingerprints Humans Ionization Lasers Machine learning Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Medical prognosis Metabolism Metabolites Nanoparticles Physical Sciences Prognosis Reproducibility of Results |
title | Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20and%20prognosis%20of%20breast%20cancer%20by%20high-performance%20serum%20metabolic%20fingerprints&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huang,%20Yida&rft.date=2022-03-22&rft.volume=119&rft.issue=12&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2122245119&rft_dat=%3Cjstor_pubme%3E27151053%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-2422386cc7b8aad848a40264dc08073833e01e38a5235ca585b2f00c259724743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642940385&rft_id=info:pmid/35302894&rft_jstor_id=27151053&rfr_iscdi=true |