Loading…

Artificial Intelligence Technologies for COVID-19 De Novo Drug Design

The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and ar...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-03, Vol.23 (6), p.3261
Main Authors: Floresta, Giuseppe, Zagni, Chiara, Gentile, Davide, Patamia, Vincenzo, Rescifina, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523
cites cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523
container_end_page
container_issue 6
container_start_page 3261
container_title International journal of molecular sciences
container_volume 23
creator Floresta, Giuseppe
Zagni, Chiara
Gentile, Davide
Patamia, Vincenzo
Rescifina, Antonio
description The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.
doi_str_mv 10.3390/ijms23063261
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644003892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMofqzePEvBiwerSSZNm4uw7PqxsLgX9RradFqzdBtNWsH_3i6usnqaGebHm3k8Qk4ZvQJQ9NouV4EDlcAl2yGHTHAeUyrT3a3-gByFsKSUA0_UPjmABHgmM35Ibse-s5U1Nm-iWdth09gaW4PRE5rX1jWuthiiyvlosniZTWOmoilGj-7DRVPf18MQbN0ek70qbwKebOqIPN_dPk0e4vnifjYZz2MjGO9imaKSqTAJZwVWdBiKpCoB07xSWTl44AVIBGoyFEamRlBRZVAyRrkEkXAYkZtv3be-WGFpsO183ug3b1e5_9Qut_rvprWvunYfOlNCpSodBC42At699xg6vbLBDK7zFl0fNJdCUAqZWt86_4cuXe_bwd6a4gIgYXKgLr8p410IHqvfZxjV63z0dj4DfrZt4Bf-CQS-AKDPibI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642433516</pqid></control><display><type>article</type><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</creator><creatorcontrib>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</creatorcontrib><description>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23063261</identifier><identifier>PMID: 35328682</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Antiviral Agents - therapeutic use ; Artificial Intelligence ; Binding sites ; Computational chemistry ; Computer applications ; Computers ; Coronaviruses ; COVID-19 ; COVID-19 - virology ; COVID-19 Drug Treatment ; COVID-19 vaccines ; Deep learning ; Drug Design ; Drug development ; Drug Discovery - methods ; Drug Evaluation, Preclinical ; Drugs ; High-Throughput Nucleotide Sequencing ; Humans ; Ligands ; Machine learning ; Neural networks ; New technology ; Pandemics ; Pharmaceuticals ; Proteins ; R&amp;D ; Research &amp; development ; Review ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - physiology ; Severe acute respiratory syndrome coronavirus 2 ; Small Molecule Libraries ; Software ; Structure-Activity Relationship</subject><ispartof>International journal of molecular sciences, 2022-03, Vol.23 (6), p.3261</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</citedby><cites>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</cites><orcidid>0000-0002-0048-2631 ; 0000-0001-5039-2151 ; 0000-0002-0668-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642433516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642433516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74155,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Floresta, Giuseppe</creatorcontrib><creatorcontrib>Zagni, Chiara</creatorcontrib><creatorcontrib>Gentile, Davide</creatorcontrib><creatorcontrib>Patamia, Vincenzo</creatorcontrib><creatorcontrib>Rescifina, Antonio</creatorcontrib><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</description><subject>Algorithms</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Artificial Intelligence</subject><subject>Binding sites</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Drug Treatment</subject><subject>COVID-19 vaccines</subject><subject>Deep learning</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Drug Discovery - methods</subject><subject>Drug Evaluation, Preclinical</subject><subject>Drugs</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>New technology</subject><subject>Pandemics</subject><subject>Pharmaceuticals</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Review</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - physiology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Small Molecule Libraries</subject><subject>Software</subject><subject>Structure-Activity Relationship</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkc1LxDAQxYMofqzePEvBiwerSSZNm4uw7PqxsLgX9RradFqzdBtNWsH_3i6usnqaGebHm3k8Qk4ZvQJQ9NouV4EDlcAl2yGHTHAeUyrT3a3-gByFsKSUA0_UPjmABHgmM35Ibse-s5U1Nm-iWdth09gaW4PRE5rX1jWuthiiyvlosniZTWOmoilGj-7DRVPf18MQbN0ek70qbwKebOqIPN_dPk0e4vnifjYZz2MjGO9imaKSqTAJZwVWdBiKpCoB07xSWTl44AVIBGoyFEamRlBRZVAyRrkEkXAYkZtv3be-WGFpsO183ug3b1e5_9Qut_rvprWvunYfOlNCpSodBC42At699xg6vbLBDK7zFl0fNJdCUAqZWt86_4cuXe_bwd6a4gIgYXKgLr8p410IHqvfZxjV63z0dj4DfrZt4Bf-CQS-AKDPibI</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Floresta, Giuseppe</creator><creator>Zagni, Chiara</creator><creator>Gentile, Davide</creator><creator>Patamia, Vincenzo</creator><creator>Rescifina, Antonio</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0048-2631</orcidid><orcidid>https://orcid.org/0000-0001-5039-2151</orcidid><orcidid>https://orcid.org/0000-0002-0668-1260</orcidid></search><sort><creationdate>20220317</creationdate><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><author>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Artificial Intelligence</topic><topic>Binding sites</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Drug Treatment</topic><topic>COVID-19 vaccines</topic><topic>Deep learning</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Drug Discovery - methods</topic><topic>Drug Evaluation, Preclinical</topic><topic>Drugs</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>New technology</topic><topic>Pandemics</topic><topic>Pharmaceuticals</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Review</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - physiology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Small Molecule Libraries</topic><topic>Software</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floresta, Giuseppe</creatorcontrib><creatorcontrib>Zagni, Chiara</creatorcontrib><creatorcontrib>Gentile, Davide</creatorcontrib><creatorcontrib>Patamia, Vincenzo</creatorcontrib><creatorcontrib>Rescifina, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floresta, Giuseppe</au><au>Zagni, Chiara</au><au>Gentile, Davide</au><au>Patamia, Vincenzo</au><au>Rescifina, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>3261</spage><pages>3261-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328682</pmid><doi>10.3390/ijms23063261</doi><orcidid>https://orcid.org/0000-0002-0048-2631</orcidid><orcidid>https://orcid.org/0000-0001-5039-2151</orcidid><orcidid>https://orcid.org/0000-0002-0668-1260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-03, Vol.23 (6), p.3261
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949797
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Algorithms
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Antiviral Agents - therapeutic use
Artificial Intelligence
Binding sites
Computational chemistry
Computer applications
Computers
Coronaviruses
COVID-19
COVID-19 - virology
COVID-19 Drug Treatment
COVID-19 vaccines
Deep learning
Drug Design
Drug development
Drug Discovery - methods
Drug Evaluation, Preclinical
Drugs
High-Throughput Nucleotide Sequencing
Humans
Ligands
Machine learning
Neural networks
New technology
Pandemics
Pharmaceuticals
Proteins
R&D
Research & development
Review
SARS-CoV-2 - drug effects
SARS-CoV-2 - physiology
Severe acute respiratory syndrome coronavirus 2
Small Molecule Libraries
Software
Structure-Activity Relationship
title Artificial Intelligence Technologies for COVID-19 De Novo Drug Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Technologies%20for%20COVID-19%20De%20Novo%20Drug%20Design&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Floresta,%20Giuseppe&rft.date=2022-03-17&rft.volume=23&rft.issue=6&rft.spage=3261&rft.pages=3261-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23063261&rft_dat=%3Cproquest_pubme%3E2644003892%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642433516&rft_id=info:pmid/35328682&rfr_iscdi=true