Loading…
Artificial Intelligence Technologies for COVID-19 De Novo Drug Design
The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and ar...
Saved in:
Published in: | International journal of molecular sciences 2022-03, Vol.23 (6), p.3261 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523 |
container_end_page | |
container_issue | 6 |
container_start_page | 3261 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Floresta, Giuseppe Zagni, Chiara Gentile, Davide Patamia, Vincenzo Rescifina, Antonio |
description | The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research. |
doi_str_mv | 10.3390/ijms23063261 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644003892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMofqzePEvBiwerSSZNm4uw7PqxsLgX9RradFqzdBtNWsH_3i6usnqaGebHm3k8Qk4ZvQJQ9NouV4EDlcAl2yGHTHAeUyrT3a3-gByFsKSUA0_UPjmABHgmM35Ibse-s5U1Nm-iWdth09gaW4PRE5rX1jWuthiiyvlosniZTWOmoilGj-7DRVPf18MQbN0ek70qbwKebOqIPN_dPk0e4vnifjYZz2MjGO9imaKSqTAJZwVWdBiKpCoB07xSWTl44AVIBGoyFEamRlBRZVAyRrkEkXAYkZtv3be-WGFpsO183ug3b1e5_9Qut_rvprWvunYfOlNCpSodBC42At699xg6vbLBDK7zFl0fNJdCUAqZWt86_4cuXe_bwd6a4gIgYXKgLr8p410IHqvfZxjV63z0dj4DfrZt4Bf-CQS-AKDPibI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642433516</pqid></control><display><type>article</type><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</creator><creatorcontrib>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</creatorcontrib><description>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23063261</identifier><identifier>PMID: 35328682</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Antiviral Agents - therapeutic use ; Artificial Intelligence ; Binding sites ; Computational chemistry ; Computer applications ; Computers ; Coronaviruses ; COVID-19 ; COVID-19 - virology ; COVID-19 Drug Treatment ; COVID-19 vaccines ; Deep learning ; Drug Design ; Drug development ; Drug Discovery - methods ; Drug Evaluation, Preclinical ; Drugs ; High-Throughput Nucleotide Sequencing ; Humans ; Ligands ; Machine learning ; Neural networks ; New technology ; Pandemics ; Pharmaceuticals ; Proteins ; R&D ; Research & development ; Review ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - physiology ; Severe acute respiratory syndrome coronavirus 2 ; Small Molecule Libraries ; Software ; Structure-Activity Relationship</subject><ispartof>International journal of molecular sciences, 2022-03, Vol.23 (6), p.3261</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</citedby><cites>FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</cites><orcidid>0000-0002-0048-2631 ; 0000-0001-5039-2151 ; 0000-0002-0668-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642433516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642433516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74155,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Floresta, Giuseppe</creatorcontrib><creatorcontrib>Zagni, Chiara</creatorcontrib><creatorcontrib>Gentile, Davide</creatorcontrib><creatorcontrib>Patamia, Vincenzo</creatorcontrib><creatorcontrib>Rescifina, Antonio</creatorcontrib><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</description><subject>Algorithms</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Artificial Intelligence</subject><subject>Binding sites</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Drug Treatment</subject><subject>COVID-19 vaccines</subject><subject>Deep learning</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Drug Discovery - methods</subject><subject>Drug Evaluation, Preclinical</subject><subject>Drugs</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>New technology</subject><subject>Pandemics</subject><subject>Pharmaceuticals</subject><subject>Proteins</subject><subject>R&D</subject><subject>Research & development</subject><subject>Review</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - physiology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Small Molecule Libraries</subject><subject>Software</subject><subject>Structure-Activity Relationship</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkc1LxDAQxYMofqzePEvBiwerSSZNm4uw7PqxsLgX9RradFqzdBtNWsH_3i6usnqaGebHm3k8Qk4ZvQJQ9NouV4EDlcAl2yGHTHAeUyrT3a3-gByFsKSUA0_UPjmABHgmM35Ibse-s5U1Nm-iWdth09gaW4PRE5rX1jWuthiiyvlosniZTWOmoilGj-7DRVPf18MQbN0ek70qbwKebOqIPN_dPk0e4vnifjYZz2MjGO9imaKSqTAJZwVWdBiKpCoB07xSWTl44AVIBGoyFEamRlBRZVAyRrkEkXAYkZtv3be-WGFpsO183ug3b1e5_9Qut_rvprWvunYfOlNCpSodBC42At699xg6vbLBDK7zFl0fNJdCUAqZWt86_4cuXe_bwd6a4gIgYXKgLr8p410IHqvfZxjV63z0dj4DfrZt4Bf-CQS-AKDPibI</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Floresta, Giuseppe</creator><creator>Zagni, Chiara</creator><creator>Gentile, Davide</creator><creator>Patamia, Vincenzo</creator><creator>Rescifina, Antonio</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0048-2631</orcidid><orcidid>https://orcid.org/0000-0001-5039-2151</orcidid><orcidid>https://orcid.org/0000-0002-0668-1260</orcidid></search><sort><creationdate>20220317</creationdate><title>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</title><author>Floresta, Giuseppe ; Zagni, Chiara ; Gentile, Davide ; Patamia, Vincenzo ; Rescifina, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Artificial Intelligence</topic><topic>Binding sites</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Drug Treatment</topic><topic>COVID-19 vaccines</topic><topic>Deep learning</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Drug Discovery - methods</topic><topic>Drug Evaluation, Preclinical</topic><topic>Drugs</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>New technology</topic><topic>Pandemics</topic><topic>Pharmaceuticals</topic><topic>Proteins</topic><topic>R&D</topic><topic>Research & development</topic><topic>Review</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - physiology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Small Molecule Libraries</topic><topic>Software</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floresta, Giuseppe</creatorcontrib><creatorcontrib>Zagni, Chiara</creatorcontrib><creatorcontrib>Gentile, Davide</creatorcontrib><creatorcontrib>Patamia, Vincenzo</creatorcontrib><creatorcontrib>Rescifina, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floresta, Giuseppe</au><au>Zagni, Chiara</au><au>Gentile, Davide</au><au>Patamia, Vincenzo</au><au>Rescifina, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Technologies for COVID-19 De Novo Drug Design</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>3261</spage><pages>3261-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328682</pmid><doi>10.3390/ijms23063261</doi><orcidid>https://orcid.org/0000-0002-0048-2631</orcidid><orcidid>https://orcid.org/0000-0001-5039-2151</orcidid><orcidid>https://orcid.org/0000-0002-0668-1260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-03, Vol.23 (6), p.3261 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949797 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Algorithms Antiviral Agents - chemistry Antiviral Agents - pharmacology Antiviral Agents - therapeutic use Artificial Intelligence Binding sites Computational chemistry Computer applications Computers Coronaviruses COVID-19 COVID-19 - virology COVID-19 Drug Treatment COVID-19 vaccines Deep learning Drug Design Drug development Drug Discovery - methods Drug Evaluation, Preclinical Drugs High-Throughput Nucleotide Sequencing Humans Ligands Machine learning Neural networks New technology Pandemics Pharmaceuticals Proteins R&D Research & development Review SARS-CoV-2 - drug effects SARS-CoV-2 - physiology Severe acute respiratory syndrome coronavirus 2 Small Molecule Libraries Software Structure-Activity Relationship |
title | Artificial Intelligence Technologies for COVID-19 De Novo Drug Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Technologies%20for%20COVID-19%20De%20Novo%20Drug%20Design&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Floresta,%20Giuseppe&rft.date=2022-03-17&rft.volume=23&rft.issue=6&rft.spage=3261&rft.pages=3261-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23063261&rft_dat=%3Cproquest_pubme%3E2644003892%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-67e9674c521bef0e96b5fd3e7af98d3062b36e30c8e4c67c404f83d1102634523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642433516&rft_id=info:pmid/35328682&rfr_iscdi=true |