Loading…
Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification
Electrospray ionization (ESI) in-source fragmentation (ISF) has traditionally been minimized to promote precursor molecular ion formation, and therefore its value in molecular identification is underappreciated. In-source annotation algorithms have been shown to increase confidence in putative ident...
Saved in:
Published in: | Analytical chemistry (Washington) 2020-04, Vol.92 (8), p.6051-6059 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrospray ionization (ESI) in-source fragmentation (ISF) has traditionally been minimized to promote precursor molecular ion formation, and therefore its value in molecular identification is underappreciated. In-source annotation algorithms have been shown to increase confidence in putative identifications by using ubiquitous in-source fragments. However, these in-source annotation algorithms are limited by ESI sources that are generally designed to minimize ISF. In this study, enhanced in-source fragmentation annotation (eISA) was created by tuning the ISF conditions to generate in-source fragmentation patterns comparable with higher energy fragments generated at higher collision energies as deposited in the METLIN MS/MS library, without compromising the intensity of precursor ions (median loss ≤10% in both positive and negative ionization modes). The analysis of 50 molecules was used to validate the approach in comparison to MS/MS spectra produced via data dependent acquisition (DDA) and data independent acquisition (DIA) mode with quadrupole time-of-flight mass spectrometry (QTOF-MS). Enhanced ISF as compared to QTOF DDA enabled higher peak intensities for the precursor ions (median: 18 times in negative mode and 210 times in positive mode), with the eISA fragmentation patterns consistent with METLIN for over 90% of the molecules with respect to fragment relative intensity and m/z. eISA also provides higher peak intensity as opposed to QTOF DIA for over 60% of the precursor ions in negative mode (median increase: 20%) and for 88% of the precursor ions in positive mode (median increase: 80%). Molecular identification with eISA was also successfully validated from the analysis of a metabolic extract from macrophages. An interesting side benefit of enhanced ISF is that it significantly improved molecular identification confidence with low resolution single quadrupole mass-spectrometry-based untargeted LC/MS experiments. Overall, enhanced ISF allowed for eISA to be used as a more sensitive alternative to other QTOF DIA and DDA approaches, and further, it enabled the acquisition of ESI TOF and ESI single quadrupole mass spectrometry instrumentation spectra with improved molecular identification confidence. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c00409 |