Loading…
The development and evolution of inhibitory neurons in primate cerebrum
Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs) 1 , and recent studies have identified primate-specific neuronal populations at the molecular level 2 . However, we know little about the developmental mechanism...
Saved in:
Published in: | Nature (London) 2022-03, Vol.603 (7903), p.871-877 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3 |
container_end_page | 877 |
container_issue | 7903 |
container_start_page | 871 |
container_title | Nature (London) |
container_volume | 603 |
creator | Schmitz, Matthew T. Sandoval, Kadellyn Chen, Christopher P. Mostajo-Radji, Mohammed A. Seeley, William W. Nowakowski, Tomasz J. Ye, Chun Jimmie Paredes, Mercedes F. Pollen, Alex A. |
description | Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)
1
, and recent studies have identified primate-specific neuronal populations at the molecular level
2
. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific
TAC3
striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Evolutionary modelling shows that an initial set of inhibitory neurons serving olfactory bulbs may have been repurposed to diversify the taxonomy of interneurons found in the expanded striata and cortices in primates. |
doi_str_mv | 10.1038/s41586-022-04510-w |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8967711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642886734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi0Egi30D_RQReLSS4q_4o9LpQq1gITEZTlbjjNmgxJ7sZNF_Hu8LKWlB04jzTzzzjt6EfpC8HeCmTrLnDRK1JjSGvOG4PpxDy0Il6LmQsl9tMCYqhorJo7Qp5zvMcYNkfwQHbGGUUoZWaCL5QqqDjYwxPUIYaps6CrYxGGe-hiq6Ks-rPq2n2J6qgLMKYZcWtU69aOdoHKQoE3zeIIOvB0yfH6tx-j296_l-WV9fXNxdf7zunZc8ql2qgPLBW9Ew53EFDvROiUoaTnRXgDxjHEvmfaagGTeWtdpB7aRrQavHTtGP3a667kdoXPFcrKDebGTnky0vXk_Cf3K3MWNUVpISUgR-PYqkOLDDHkyY58dDIMNEOdsqOBUKSEZL-jpf-h9nFMo720poZVkSheK7iiXYs4J_JsZgs02J7PLyZSczEtO5rEsff33jbeVP8EUgO2AXEbhDtLf2x_IPgMDXqA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646987389</pqid></control><display><type>article</type><title>The development and evolution of inhibitory neurons in primate cerebrum</title><source>Nature</source><creator>Schmitz, Matthew T. ; Sandoval, Kadellyn ; Chen, Christopher P. ; Mostajo-Radji, Mohammed A. ; Seeley, William W. ; Nowakowski, Tomasz J. ; Ye, Chun Jimmie ; Paredes, Mercedes F. ; Pollen, Alex A.</creator><creatorcontrib>Schmitz, Matthew T. ; Sandoval, Kadellyn ; Chen, Christopher P. ; Mostajo-Radji, Mohammed A. ; Seeley, William W. ; Nowakowski, Tomasz J. ; Ye, Chun Jimmie ; Paredes, Mercedes F. ; Pollen, Alex A.</creatorcontrib><description>Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)
1
, and recent studies have identified primate-specific neuronal populations at the molecular level
2
. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific
TAC3
striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Evolutionary modelling shows that an initial set of inhibitory neurons serving olfactory bulbs may have been repurposed to diversify the taxonomy of interneurons found in the expanded striata and cortices in primates.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04510-w</identifier><identifier>PMID: 35322231</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/32 ; 38/39 ; 45/91 ; 631/136/368/2430 ; 631/378/2571/1696 ; 631/378/2571/2573 ; Anatomy ; Animals ; Biological Evolution ; Brain architecture ; Cell cycle ; Cell division ; Cerebrum ; Corpus Striatum - growth & development ; Dopamine receptors ; Dopaminergic Neurons ; Embryonic Development ; Evolution ; Female ; Gene expression ; Humanities and Social Sciences ; Macaca - growth & development ; Mammals ; Mice ; multidisciplinary ; Neostriatum ; Neural stem cells ; Neurogenesis - physiology ; Neurons ; Neuropeptides ; Neurotransmitter receptors ; Neurotransmitters ; Olfactory bulb ; Olfactory Bulb - physiology ; Population ; Pregnancy ; Prenatal development ; Primates ; Progenitor cells ; Science ; Science (multidisciplinary) ; Substantia alba ; Taxonomy ; Transcription ; Transcription factors ; Transcriptomes</subject><ispartof>Nature (London), 2022-03, Vol.603 (7903), p.871-877</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 31, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3</citedby><cites>FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3</cites><orcidid>0000-0003-3263-8634 ; 0000-0002-0800-444X ; 0000-0001-6560-3783 ; 0000-0002-1634-7514 ; 0000-0003-2345-4964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35322231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitz, Matthew T.</creatorcontrib><creatorcontrib>Sandoval, Kadellyn</creatorcontrib><creatorcontrib>Chen, Christopher P.</creatorcontrib><creatorcontrib>Mostajo-Radji, Mohammed A.</creatorcontrib><creatorcontrib>Seeley, William W.</creatorcontrib><creatorcontrib>Nowakowski, Tomasz J.</creatorcontrib><creatorcontrib>Ye, Chun Jimmie</creatorcontrib><creatorcontrib>Paredes, Mercedes F.</creatorcontrib><creatorcontrib>Pollen, Alex A.</creatorcontrib><title>The development and evolution of inhibitory neurons in primate cerebrum</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)
1
, and recent studies have identified primate-specific neuronal populations at the molecular level
2
. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific
TAC3
striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Evolutionary modelling shows that an initial set of inhibitory neurons serving olfactory bulbs may have been repurposed to diversify the taxonomy of interneurons found in the expanded striata and cortices in primates.</description><subject>13/1</subject><subject>13/51</subject><subject>14/32</subject><subject>38/39</subject><subject>45/91</subject><subject>631/136/368/2430</subject><subject>631/378/2571/1696</subject><subject>631/378/2571/2573</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Brain architecture</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cerebrum</subject><subject>Corpus Striatum - growth & development</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons</subject><subject>Embryonic Development</subject><subject>Evolution</subject><subject>Female</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Macaca - growth & development</subject><subject>Mammals</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Neostriatum</subject><subject>Neural stem cells</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Neuropeptides</subject><subject>Neurotransmitter receptors</subject><subject>Neurotransmitters</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - physiology</subject><subject>Population</subject><subject>Pregnancy</subject><subject>Prenatal development</subject><subject>Primates</subject><subject>Progenitor cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substantia alba</subject><subject>Taxonomy</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhi0Egi30D_RQReLSS4q_4o9LpQq1gITEZTlbjjNmgxJ7sZNF_Hu8LKWlB04jzTzzzjt6EfpC8HeCmTrLnDRK1JjSGvOG4PpxDy0Il6LmQsl9tMCYqhorJo7Qp5zvMcYNkfwQHbGGUUoZWaCL5QqqDjYwxPUIYaps6CrYxGGe-hiq6Ks-rPq2n2J6qgLMKYZcWtU69aOdoHKQoE3zeIIOvB0yfH6tx-j296_l-WV9fXNxdf7zunZc8ql2qgPLBW9Ew53EFDvROiUoaTnRXgDxjHEvmfaagGTeWtdpB7aRrQavHTtGP3a667kdoXPFcrKDebGTnky0vXk_Cf3K3MWNUVpISUgR-PYqkOLDDHkyY58dDIMNEOdsqOBUKSEZL-jpf-h9nFMo720poZVkSheK7iiXYs4J_JsZgs02J7PLyZSczEtO5rEsff33jbeVP8EUgO2AXEbhDtLf2x_IPgMDXqA0</recordid><startdate>20220331</startdate><enddate>20220331</enddate><creator>Schmitz, Matthew T.</creator><creator>Sandoval, Kadellyn</creator><creator>Chen, Christopher P.</creator><creator>Mostajo-Radji, Mohammed A.</creator><creator>Seeley, William W.</creator><creator>Nowakowski, Tomasz J.</creator><creator>Ye, Chun Jimmie</creator><creator>Paredes, Mercedes F.</creator><creator>Pollen, Alex A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3263-8634</orcidid><orcidid>https://orcid.org/0000-0002-0800-444X</orcidid><orcidid>https://orcid.org/0000-0001-6560-3783</orcidid><orcidid>https://orcid.org/0000-0002-1634-7514</orcidid><orcidid>https://orcid.org/0000-0003-2345-4964</orcidid></search><sort><creationdate>20220331</creationdate><title>The development and evolution of inhibitory neurons in primate cerebrum</title><author>Schmitz, Matthew T. ; Sandoval, Kadellyn ; Chen, Christopher P. ; Mostajo-Radji, Mohammed A. ; Seeley, William W. ; Nowakowski, Tomasz J. ; Ye, Chun Jimmie ; Paredes, Mercedes F. ; Pollen, Alex A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/32</topic><topic>38/39</topic><topic>45/91</topic><topic>631/136/368/2430</topic><topic>631/378/2571/1696</topic><topic>631/378/2571/2573</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Brain architecture</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cerebrum</topic><topic>Corpus Striatum - growth & development</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons</topic><topic>Embryonic Development</topic><topic>Evolution</topic><topic>Female</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Macaca - growth & development</topic><topic>Mammals</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Neostriatum</topic><topic>Neural stem cells</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Neuropeptides</topic><topic>Neurotransmitter receptors</topic><topic>Neurotransmitters</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - physiology</topic><topic>Population</topic><topic>Pregnancy</topic><topic>Prenatal development</topic><topic>Primates</topic><topic>Progenitor cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substantia alba</topic><topic>Taxonomy</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, Matthew T.</creatorcontrib><creatorcontrib>Sandoval, Kadellyn</creatorcontrib><creatorcontrib>Chen, Christopher P.</creatorcontrib><creatorcontrib>Mostajo-Radji, Mohammed A.</creatorcontrib><creatorcontrib>Seeley, William W.</creatorcontrib><creatorcontrib>Nowakowski, Tomasz J.</creatorcontrib><creatorcontrib>Ye, Chun Jimmie</creatorcontrib><creatorcontrib>Paredes, Mercedes F.</creatorcontrib><creatorcontrib>Pollen, Alex A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, Matthew T.</au><au>Sandoval, Kadellyn</au><au>Chen, Christopher P.</au><au>Mostajo-Radji, Mohammed A.</au><au>Seeley, William W.</au><au>Nowakowski, Tomasz J.</au><au>Ye, Chun Jimmie</au><au>Paredes, Mercedes F.</au><au>Pollen, Alex A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The development and evolution of inhibitory neurons in primate cerebrum</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-03-31</date><risdate>2022</risdate><volume>603</volume><issue>7903</issue><spage>871</spage><epage>877</epage><pages>871-877</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)
1
, and recent studies have identified primate-specific neuronal populations at the molecular level
2
. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific
TAC3
striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Evolutionary modelling shows that an initial set of inhibitory neurons serving olfactory bulbs may have been repurposed to diversify the taxonomy of interneurons found in the expanded striata and cortices in primates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35322231</pmid><doi>10.1038/s41586-022-04510-w</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3263-8634</orcidid><orcidid>https://orcid.org/0000-0002-0800-444X</orcidid><orcidid>https://orcid.org/0000-0001-6560-3783</orcidid><orcidid>https://orcid.org/0000-0002-1634-7514</orcidid><orcidid>https://orcid.org/0000-0003-2345-4964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-03, Vol.603 (7903), p.871-877 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8967711 |
source | Nature |
subjects | 13/1 13/51 14/32 38/39 45/91 631/136/368/2430 631/378/2571/1696 631/378/2571/2573 Anatomy Animals Biological Evolution Brain architecture Cell cycle Cell division Cerebrum Corpus Striatum - growth & development Dopamine receptors Dopaminergic Neurons Embryonic Development Evolution Female Gene expression Humanities and Social Sciences Macaca - growth & development Mammals Mice multidisciplinary Neostriatum Neural stem cells Neurogenesis - physiology Neurons Neuropeptides Neurotransmitter receptors Neurotransmitters Olfactory bulb Olfactory Bulb - physiology Population Pregnancy Prenatal development Primates Progenitor cells Science Science (multidisciplinary) Substantia alba Taxonomy Transcription Transcription factors Transcriptomes |
title | The development and evolution of inhibitory neurons in primate cerebrum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20development%20and%20evolution%20of%20inhibitory%20neurons%20in%20primate%20cerebrum&rft.jtitle=Nature%20(London)&rft.au=Schmitz,%20Matthew%20T.&rft.date=2022-03-31&rft.volume=603&rft.issue=7903&rft.spage=871&rft.epage=877&rft.pages=871-877&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04510-w&rft_dat=%3Cproquest_pubme%3E2642886734%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c8dea4645654c7020c6bc8621b419f6e1f334f739f91e73faacd9cea57b9ef9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646987389&rft_id=info:pmid/35322231&rfr_iscdi=true |