Loading…
The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins
Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genom...
Saved in:
Published in: | Current genetics 2022-04, Vol.68 (2), p.253-265 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-b7971e6081e6899bb433daa71879a366c629627925f1362c949bb074670d6c153 |
container_end_page | 265 |
container_issue | 2 |
container_start_page | 253 |
container_title | Current genetics |
container_volume | 68 |
creator | Bachant, Jeff Hoffman, Elizabeth A. Caridi, Chris Nugent, Constance I. Feng, Wenyi |
description | Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant,
dbf4-zn
, lacking the Zn
2+
finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in
pri1-m4
mutants defective for the catalytic subunit of DNA primase and
rad53
mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn
2+
finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively,
dbf4-zn
may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress. |
doi_str_mv | 10.1007/s00294-022-01230-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8976809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646396618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b7971e6081e6899bb433daa71879a366c629627925f1362c949bb074670d6c153</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EopfCH2BliQ0SCoztXD82SFXLo1JFN-2GjeUkzq1LYgePg-i_x5dbgcqCjUfWfOdoZg4hLxm8ZQDqHQJw0zbAeQOMC2jkI7Jhrahfo8VjsgGmeKNBiyPyDPEWKqWNekqOxJa1SrV8Q35e3Xh65x0WetaNLf0a-Rs6hrjzmQ5pdiFSXJcle0SPFGtj8g2W7OLgB3r25YS6QrNfptC7ElKkY8rfkIYYSnClImNOM3XVpENfaBppymEXIj4nT0Y3oX9xX4_J9ccPV6efm4vLT-enJxdNLwQvTaeMYl6Cro82putaIQbnFNPKOCFlL7mRXBm-HZmQvDdtZUC1UsEge7YVx-T9wXdZu9kPvY91-MkuOcwu39nkgn3YieHG7tIPWy8lNZhq8PreIKfvq8di54C9nyYXfVrRcsm1AA7bPfrqH_Q2rTnW9SrVSmGkZLpS_ED1OSFmP_4ZhoHdB2sPwdoarP0drJVVJA4irPA-nb_W_1H9AowgpBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646396618</pqid></control><display><type>article</type><title>The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins</title><source>Springer Link</source><creator>Bachant, Jeff ; Hoffman, Elizabeth A. ; Caridi, Chris ; Nugent, Constance I. ; Feng, Wenyi</creator><creatorcontrib>Bachant, Jeff ; Hoffman, Elizabeth A. ; Caridi, Chris ; Nugent, Constance I. ; Feng, Wenyi</creatorcontrib><description>Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant,
dbf4-zn
, lacking the Zn
2+
finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in
pri1-m4
mutants defective for the catalytic subunit of DNA primase and
rad53
mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn
2+
finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively,
dbf4-zn
may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-022-01230-6</identifier><identifier>PMID: 35147742</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Biochemistry ; Biomedical and Life Sciences ; C-Terminus ; Cell Biology ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA helicase ; DNA primase ; Domains ; Emission ; Genomes ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mutants ; Original ; Original Article ; Origins ; Phenotypes ; Plant Sciences ; Primase ; Protein kinase ; Proteomics ; Replication ; Replication forks ; Replication origins ; Restarting ; S phase ; Single-stranded DNA ; Substrates ; Yeast ; Yeasts ; Zinc</subject><ispartof>Current genetics, 2022-04, Vol.68 (2), p.253-265</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-b7971e6081e6899bb433daa71879a366c629627925f1362c949bb074670d6c153</cites><orcidid>0000-0002-1934-2268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Bachant, Jeff</creatorcontrib><creatorcontrib>Hoffman, Elizabeth A.</creatorcontrib><creatorcontrib>Caridi, Chris</creatorcontrib><creatorcontrib>Nugent, Constance I.</creatorcontrib><creatorcontrib>Feng, Wenyi</creatorcontrib><title>The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant,
dbf4-zn
, lacking the Zn
2+
finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in
pri1-m4
mutants defective for the catalytic subunit of DNA primase and
rad53
mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn
2+
finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively,
dbf4-zn
may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.</description><subject>Accumulation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>C-Terminus</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA helicase</subject><subject>DNA primase</subject><subject>Domains</subject><subject>Emission</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutants</subject><subject>Original</subject><subject>Original Article</subject><subject>Origins</subject><subject>Phenotypes</subject><subject>Plant Sciences</subject><subject>Primase</subject><subject>Protein kinase</subject><subject>Proteomics</subject><subject>Replication</subject><subject>Replication forks</subject><subject>Replication origins</subject><subject>Restarting</subject><subject>S phase</subject><subject>Single-stranded DNA</subject><subject>Substrates</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>Zinc</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhS0EopfCH2BliQ0SCoztXD82SFXLo1JFN-2GjeUkzq1LYgePg-i_x5dbgcqCjUfWfOdoZg4hLxm8ZQDqHQJw0zbAeQOMC2jkI7Jhrahfo8VjsgGmeKNBiyPyDPEWKqWNekqOxJa1SrV8Q35e3Xh65x0WetaNLf0a-Rs6hrjzmQ5pdiFSXJcle0SPFGtj8g2W7OLgB3r25YS6QrNfptC7ElKkY8rfkIYYSnClImNOM3XVpENfaBppymEXIj4nT0Y3oX9xX4_J9ccPV6efm4vLT-enJxdNLwQvTaeMYl6Cro82putaIQbnFNPKOCFlL7mRXBm-HZmQvDdtZUC1UsEge7YVx-T9wXdZu9kPvY91-MkuOcwu39nkgn3YieHG7tIPWy8lNZhq8PreIKfvq8di54C9nyYXfVrRcsm1AA7bPfrqH_Q2rTnW9SrVSmGkZLpS_ED1OSFmP_4ZhoHdB2sPwdoarP0drJVVJA4irPA-nb_W_1H9AowgpBg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Bachant, Jeff</creator><creator>Hoffman, Elizabeth A.</creator><creator>Caridi, Chris</creator><creator>Nugent, Constance I.</creator><creator>Feng, Wenyi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1934-2268</orcidid></search><sort><creationdate>20220401</creationdate><title>The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins</title><author>Bachant, Jeff ; Hoffman, Elizabeth A. ; Caridi, Chris ; Nugent, Constance I. ; Feng, Wenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b7971e6081e6899bb433daa71879a366c629627925f1362c949bb074670d6c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>C-Terminus</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA helicase</topic><topic>DNA primase</topic><topic>Domains</topic><topic>Emission</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutants</topic><topic>Original</topic><topic>Original Article</topic><topic>Origins</topic><topic>Phenotypes</topic><topic>Plant Sciences</topic><topic>Primase</topic><topic>Protein kinase</topic><topic>Proteomics</topic><topic>Replication</topic><topic>Replication forks</topic><topic>Replication origins</topic><topic>Restarting</topic><topic>S phase</topic><topic>Single-stranded DNA</topic><topic>Substrates</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachant, Jeff</creatorcontrib><creatorcontrib>Hoffman, Elizabeth A.</creatorcontrib><creatorcontrib>Caridi, Chris</creatorcontrib><creatorcontrib>Nugent, Constance I.</creatorcontrib><creatorcontrib>Feng, Wenyi</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachant, Jeff</au><au>Hoffman, Elizabeth A.</au><au>Caridi, Chris</au><au>Nugent, Constance I.</au><au>Feng, Wenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>68</volume><issue>2</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant,
dbf4-zn
, lacking the Zn
2+
finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in
pri1-m4
mutants defective for the catalytic subunit of DNA primase and
rad53
mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn
2+
finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively,
dbf4-zn
may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35147742</pmid><doi>10.1007/s00294-022-01230-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1934-2268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2022-04, Vol.68 (2), p.253-265 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8976809 |
source | Springer Link |
subjects | Accumulation Biochemistry Biomedical and Life Sciences C-Terminus Cell Biology Deoxyribonucleic acid DNA DNA biosynthesis DNA helicase DNA primase Domains Emission Genomes Kinases Life Sciences Microbial Genetics and Genomics Microbiology Mutants Original Original Article Origins Phenotypes Plant Sciences Primase Protein kinase Proteomics Replication Replication forks Replication origins Restarting S phase Single-stranded DNA Substrates Yeast Yeasts Zinc |
title | The yeast Dbf4 Zn2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20yeast%20Dbf4%20Zn2+%20finger%20domain%20suppresses%20single-stranded%20DNA%20at%20replication%20forks%20initiated%20from%20a%20subset%20of%20origins&rft.jtitle=Current%20genetics&rft.au=Bachant,%20Jeff&rft.date=2022-04-01&rft.volume=68&rft.issue=2&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-022-01230-6&rft_dat=%3Cproquest_pubme%3E2646396618%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-b7971e6081e6899bb433daa71879a366c629627925f1362c949bb074670d6c153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646396618&rft_id=info:pmid/35147742&rfr_iscdi=true |