Loading…

Enhancing the Throughput of FT Mass Spectrometry Imaging Using Joint Compressed Sensing and Subspace Modeling

Mass spectrometry imaging (MSI) allows for untargeted mapping of the chemical composition of tissues with attomole detection limits. MSI using Fourier transform (FT)-based mass spectrometers, such as FT-ion cyclotron resonance (FT-ICR), grants the ability to examine the chemical space with unmatched...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-04, Vol.94 (13), p.5335-5343
Main Authors: Xie, Yuxuan Richard, Castro, Daniel C, Rubakhin, Stanislav S, Sweedler, Jonathan V, Lam, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mass spectrometry imaging (MSI) allows for untargeted mapping of the chemical composition of tissues with attomole detection limits. MSI using Fourier transform (FT)-based mass spectrometers, such as FT-ion cyclotron resonance (FT-ICR), grants the ability to examine the chemical space with unmatched mass resolution and mass accuracy. However, direct imaging of large tissue samples using FT-ICR is slow. In this work, we present an approach that combines the subspace modeling of ICR temporal signals with compressed sensing to accelerate high-resolution FT-ICR MSI. A joint subspace and spatial sparsity constrained model computationally reconstructs high-resolution MSI data from the sparsely sampled transients with reduced duration, allowing a significant reduction in imaging time. Simulation studies and experimental implementation of the proposed method in investigation of brain tissues demonstrate a 10-fold enhancement in throughput of FT-ICR MSI, without the need for instrumental or hardware modifications.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c05279