Loading…

How to fix a broken protein: restoring function to mutant human cystathionine β-synthase

Inborn errors of metabolism (IEM) comprise a large class of recessive genetic diseases involving disorders of cellular metabolism that tend to be caused by missense mutations in which a single incorrect amino acid is substituted in the polypeptide chain. Cystathionine beta-synthase (CBS) deficiency...

Full description

Saved in:
Bibliographic Details
Published in:Human genetics 2022-07, Vol.141 (7), p.1299-1308
Main Author: Kruger, Warren D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inborn errors of metabolism (IEM) comprise a large class of recessive genetic diseases involving disorders of cellular metabolism that tend to be caused by missense mutations in which a single incorrect amino acid is substituted in the polypeptide chain. Cystathionine beta-synthase (CBS) deficiency is an example of an IEM that causes large elevations of blood total homocysteine levels, resulting in phenotypes in several tissues. Current treatment strategies involve dietary restriction and vitamin therapy, but these are only partially effective and do not work in all patients. Over 85% of the described mutations in CBS-deficient patients are missense mutations in which the mutant protein fails to fold into an active conformation. The ability of CBS to achieve an active conformation is affected by a variety of intracellular protein networks including the chaperone system and the ubiquitin/proteasome system, collectively referred to as the proteostasis network. Proteostasis modulators are drugs that perturb various aspects of these networks. In this article, we will review the evidence that modulation of the intracellular protein folding environment can be used as a potential therapeutic strategy to treat CBS deficiency and discuss the pros and cons of such a strategy.
ISSN:0340-6717
1432-1203
DOI:10.1007/s00439-021-02386-w