Loading…
Methanosaeta and " Candidatus Velamenicoccus archaeovorus"
The phylum " Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In...
Saved in:
Published in: | Applied and environmental microbiology 2022-04, Vol.88 (7), p.e0240721-e0240721 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3 |
container_end_page | e0240721 |
container_issue | 7 |
container_start_page | e0240721 |
container_title | Applied and environmental microbiology |
container_volume | 88 |
creator | Kizina, Jana Jordan, Sebastian F A Martens, Gerrit Alexander Lonsing, Almud Probian, Christina Kolovou, Androniki Santarella-Mellwig, Rachel Rhiel, Erhard Littmann, Sten Markert, Stephanie Stüber, Kurt Richter, Michael Schweder, Thomas Harder, Jens |
description | The phylum "
Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic
, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence
hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to
and to
indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "
Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM.
Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on
and
. We detected sick and dead cells of the filamentous archaeon
in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "
Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "
Velamenicoccus archaeovorus." Its metabolic vers |
doi_str_mv | 10.1128/aem.02407-21 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9004380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641515894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhoNUuqv2zuuy2BsFx558TtKLQlmqFhRvbG_D2UzGHZmZaDKz4L837dr1AyQXh3AeHvLmJWSfwgmlTH9F350AE1AWjG6RKQWjC8m5-kCmAMYULO8mZCelWwAQoPRHMuGSUyopTMm3Sz8ssQ8J_YAz7KvZwWyeR1PhMKbZH99i5_vGBefyFaNbog-rEMd0sEe2a2yT__Q0d8nv05_X8_Pi4urs1_zHRYFCqKGowDPBnBGM1uBKqsRC8YpzU-UDaGpjUDMpK2VEyYGXXjPQulzUqECwBd8l39feu3HR-cr5fojY2rvYdBgfbMDGvt70zdLehJU1OS_XkAWHT4IY7kefBts1yfm2xd6HMVmmRP4MqY3I6Jc36G0YY5_jZUpKxSg1MlPHa8rFkFL09eYxFOzfUmwuxf4rxTKa8aM1jqljz8J32M8vw27E_xvjj6Phkvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655621195</pqid></control><display><type>article</type><title>Methanosaeta and " Candidatus Velamenicoccus archaeovorus"</title><source>Open Access: PubMed Central</source><source>ASM_美国微生物学会期刊</source><creator>Kizina, Jana ; Jordan, Sebastian F A ; Martens, Gerrit Alexander ; Lonsing, Almud ; Probian, Christina ; Kolovou, Androniki ; Santarella-Mellwig, Rachel ; Rhiel, Erhard ; Littmann, Sten ; Markert, Stephanie ; Stüber, Kurt ; Richter, Michael ; Schweder, Thomas ; Harder, Jens</creator><contributor>Buan, Nicole R ; Buan, Nicole R.</contributor><creatorcontrib>Kizina, Jana ; Jordan, Sebastian F A ; Martens, Gerrit Alexander ; Lonsing, Almud ; Probian, Christina ; Kolovou, Androniki ; Santarella-Mellwig, Rachel ; Rhiel, Erhard ; Littmann, Sten ; Markert, Stephanie ; Stüber, Kurt ; Richter, Michael ; Schweder, Thomas ; Harder, Jens ; Buan, Nicole R ; Buan, Nicole R.</creatorcontrib><description>The phylum "
Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic
, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence
hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to
and to
indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "
Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM.
Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on
and
. We detected sick and dead cells of the filamentous archaeon
in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "
Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "
Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "
Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.02407-21</identifier><identifier>PMID: 35311510</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Archaea ; Archaea - metabolism ; Bacteria - genetics ; Candidate species ; Cell culture ; Centrifugation ; Conservation ; Deoxyribonucleic acid ; Depolymerization ; DNA ; Energy conservation ; Environmental Microbiology ; Fermentation ; Ferredoxin ; Ferredoxins - metabolism ; Filaments ; Fluorescence ; Fluorescence in situ hybridization ; Genomes ; Glycolysis ; In Situ Hybridization, Fluorescence ; Limonene ; Macromolecules ; Metabolism ; Metagenomics ; Methanosaeta ; Methanosarcinaceae - metabolism ; Microscopy ; NAD ; New species ; Nucleic acids ; Oxidoreductase ; Oxidoreductases - metabolism ; Phylogeny ; Predation ; Pyruvic acid ; Pyruvic Acid - metabolism ; RNA, Ribosomal, 16S - genetics ; rRNA ; Scanning electron microscopy ; Sugars - metabolism ; Transmission electron microscopy</subject><ispartof>Applied and environmental microbiology, 2022-04, Vol.88 (7), p.e0240721-e0240721</ispartof><rights>Copyright © 2022 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Apr 2022</rights><rights>Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3</citedby><cites>FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3</cites><orcidid>0000-0001-9440-3609 ; 0000-0002-6879-6063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/aem.02407-21$$EPDF$$P50$$Gasm2$$H</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/aem.02407-21$$EHTML$$P50$$Gasm2$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,52751,52752,52753,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35311510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Buan, Nicole R</contributor><contributor>Buan, Nicole R.</contributor><creatorcontrib>Kizina, Jana</creatorcontrib><creatorcontrib>Jordan, Sebastian F A</creatorcontrib><creatorcontrib>Martens, Gerrit Alexander</creatorcontrib><creatorcontrib>Lonsing, Almud</creatorcontrib><creatorcontrib>Probian, Christina</creatorcontrib><creatorcontrib>Kolovou, Androniki</creatorcontrib><creatorcontrib>Santarella-Mellwig, Rachel</creatorcontrib><creatorcontrib>Rhiel, Erhard</creatorcontrib><creatorcontrib>Littmann, Sten</creatorcontrib><creatorcontrib>Markert, Stephanie</creatorcontrib><creatorcontrib>Stüber, Kurt</creatorcontrib><creatorcontrib>Richter, Michael</creatorcontrib><creatorcontrib>Schweder, Thomas</creatorcontrib><creatorcontrib>Harder, Jens</creatorcontrib><title>Methanosaeta and " Candidatus Velamenicoccus archaeovorus"</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><addtitle>Appl Environ Microbiol</addtitle><description>The phylum "
Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic
, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence
hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to
and to
indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "
Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM.
Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on
and
. We detected sick and dead cells of the filamentous archaeon
in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "
Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "
Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "
Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.</description><subject>Archaea</subject><subject>Archaea - metabolism</subject><subject>Bacteria - genetics</subject><subject>Candidate species</subject><subject>Cell culture</subject><subject>Centrifugation</subject><subject>Conservation</subject><subject>Deoxyribonucleic acid</subject><subject>Depolymerization</subject><subject>DNA</subject><subject>Energy conservation</subject><subject>Environmental Microbiology</subject><subject>Fermentation</subject><subject>Ferredoxin</subject><subject>Ferredoxins - metabolism</subject><subject>Filaments</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Genomes</subject><subject>Glycolysis</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Limonene</subject><subject>Macromolecules</subject><subject>Metabolism</subject><subject>Metagenomics</subject><subject>Methanosaeta</subject><subject>Methanosarcinaceae - metabolism</subject><subject>Microscopy</subject><subject>NAD</subject><subject>New species</subject><subject>Nucleic acids</subject><subject>Oxidoreductase</subject><subject>Oxidoreductases - metabolism</subject><subject>Phylogeny</subject><subject>Predation</subject><subject>Pyruvic acid</subject><subject>Pyruvic Acid - metabolism</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA</subject><subject>Scanning electron microscopy</subject><subject>Sugars - metabolism</subject><subject>Transmission electron microscopy</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LHDEUhoNUuqv2zuuy2BsFx558TtKLQlmqFhRvbG_D2UzGHZmZaDKz4L837dr1AyQXh3AeHvLmJWSfwgmlTH9F350AE1AWjG6RKQWjC8m5-kCmAMYULO8mZCelWwAQoPRHMuGSUyopTMm3Sz8ssQ8J_YAz7KvZwWyeR1PhMKbZH99i5_vGBefyFaNbog-rEMd0sEe2a2yT__Q0d8nv05_X8_Pi4urs1_zHRYFCqKGowDPBnBGM1uBKqsRC8YpzU-UDaGpjUDMpK2VEyYGXXjPQulzUqECwBd8l39feu3HR-cr5fojY2rvYdBgfbMDGvt70zdLehJU1OS_XkAWHT4IY7kefBts1yfm2xd6HMVmmRP4MqY3I6Jc36G0YY5_jZUpKxSg1MlPHa8rFkFL09eYxFOzfUmwuxf4rxTKa8aM1jqljz8J32M8vw27E_xvjj6Phkvc</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Kizina, Jana</creator><creator>Jordan, Sebastian F A</creator><creator>Martens, Gerrit Alexander</creator><creator>Lonsing, Almud</creator><creator>Probian, Christina</creator><creator>Kolovou, Androniki</creator><creator>Santarella-Mellwig, Rachel</creator><creator>Rhiel, Erhard</creator><creator>Littmann, Sten</creator><creator>Markert, Stephanie</creator><creator>Stüber, Kurt</creator><creator>Richter, Michael</creator><creator>Schweder, Thomas</creator><creator>Harder, Jens</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9440-3609</orcidid><orcidid>https://orcid.org/0000-0002-6879-6063</orcidid></search><sort><creationdate>20220412</creationdate><title>Methanosaeta and " Candidatus Velamenicoccus archaeovorus"</title><author>Kizina, Jana ; Jordan, Sebastian F A ; Martens, Gerrit Alexander ; Lonsing, Almud ; Probian, Christina ; Kolovou, Androniki ; Santarella-Mellwig, Rachel ; Rhiel, Erhard ; Littmann, Sten ; Markert, Stephanie ; Stüber, Kurt ; Richter, Michael ; Schweder, Thomas ; Harder, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Archaea</topic><topic>Archaea - metabolism</topic><topic>Bacteria - genetics</topic><topic>Candidate species</topic><topic>Cell culture</topic><topic>Centrifugation</topic><topic>Conservation</topic><topic>Deoxyribonucleic acid</topic><topic>Depolymerization</topic><topic>DNA</topic><topic>Energy conservation</topic><topic>Environmental Microbiology</topic><topic>Fermentation</topic><topic>Ferredoxin</topic><topic>Ferredoxins - metabolism</topic><topic>Filaments</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Genomes</topic><topic>Glycolysis</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Limonene</topic><topic>Macromolecules</topic><topic>Metabolism</topic><topic>Metagenomics</topic><topic>Methanosaeta</topic><topic>Methanosarcinaceae - metabolism</topic><topic>Microscopy</topic><topic>NAD</topic><topic>New species</topic><topic>Nucleic acids</topic><topic>Oxidoreductase</topic><topic>Oxidoreductases - metabolism</topic><topic>Phylogeny</topic><topic>Predation</topic><topic>Pyruvic acid</topic><topic>Pyruvic Acid - metabolism</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA</topic><topic>Scanning electron microscopy</topic><topic>Sugars - metabolism</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kizina, Jana</creatorcontrib><creatorcontrib>Jordan, Sebastian F A</creatorcontrib><creatorcontrib>Martens, Gerrit Alexander</creatorcontrib><creatorcontrib>Lonsing, Almud</creatorcontrib><creatorcontrib>Probian, Christina</creatorcontrib><creatorcontrib>Kolovou, Androniki</creatorcontrib><creatorcontrib>Santarella-Mellwig, Rachel</creatorcontrib><creatorcontrib>Rhiel, Erhard</creatorcontrib><creatorcontrib>Littmann, Sten</creatorcontrib><creatorcontrib>Markert, Stephanie</creatorcontrib><creatorcontrib>Stüber, Kurt</creatorcontrib><creatorcontrib>Richter, Michael</creatorcontrib><creatorcontrib>Schweder, Thomas</creatorcontrib><creatorcontrib>Harder, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kizina, Jana</au><au>Jordan, Sebastian F A</au><au>Martens, Gerrit Alexander</au><au>Lonsing, Almud</au><au>Probian, Christina</au><au>Kolovou, Androniki</au><au>Santarella-Mellwig, Rachel</au><au>Rhiel, Erhard</au><au>Littmann, Sten</au><au>Markert, Stephanie</au><au>Stüber, Kurt</au><au>Richter, Michael</au><au>Schweder, Thomas</au><au>Harder, Jens</au><au>Buan, Nicole R</au><au>Buan, Nicole R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methanosaeta and " Candidatus Velamenicoccus archaeovorus"</atitle><jtitle>Applied and environmental microbiology</jtitle><stitle>Appl Environ Microbiol</stitle><addtitle>Appl Environ Microbiol</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>88</volume><issue>7</issue><spage>e0240721</spage><epage>e0240721</epage><pages>e0240721-e0240721</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>The phylum "
Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic
, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence
hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to
and to
indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "
Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM.
Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on
and
. We detected sick and dead cells of the filamentous archaeon
in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "
Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "
Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "
Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>35311510</pmid><doi>10.1128/aem.02407-21</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9440-3609</orcidid><orcidid>https://orcid.org/0000-0002-6879-6063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2022-04, Vol.88 (7), p.e0240721-e0240721 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9004380 |
source | Open Access: PubMed Central; ASM_美国微生物学会期刊 |
subjects | Archaea Archaea - metabolism Bacteria - genetics Candidate species Cell culture Centrifugation Conservation Deoxyribonucleic acid Depolymerization DNA Energy conservation Environmental Microbiology Fermentation Ferredoxin Ferredoxins - metabolism Filaments Fluorescence Fluorescence in situ hybridization Genomes Glycolysis In Situ Hybridization, Fluorescence Limonene Macromolecules Metabolism Metagenomics Methanosaeta Methanosarcinaceae - metabolism Microscopy NAD New species Nucleic acids Oxidoreductase Oxidoreductases - metabolism Phylogeny Predation Pyruvic acid Pyruvic Acid - metabolism RNA, Ribosomal, 16S - genetics rRNA Scanning electron microscopy Sugars - metabolism Transmission electron microscopy |
title | Methanosaeta and " Candidatus Velamenicoccus archaeovorus" |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methanosaeta%20and%20%22%20Candidatus%20Velamenicoccus%20archaeovorus%22&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Kizina,%20Jana&rft.date=2022-04-12&rft.volume=88&rft.issue=7&rft.spage=e0240721&rft.epage=e0240721&rft.pages=e0240721-e0240721&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.02407-21&rft_dat=%3Cproquest_pubme%3E2641515894%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-d0e242c9421f0c7164b63d339d9d90a9f99a8255d69473037e820887bfa6042b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655621195&rft_id=info:pmid/35311510&rfr_iscdi=true |