Loading…

Assessment of SARS-CoV-2 airborne infection transmission risk in public buses

[Display omitted] •Novel combination of close proximity and room-scale risk assessment approaches.•Prediction of contagious risk due to SARS-CoV-2 respiratory infection in buses.•For urban buses the close proximity significantly affects the reproductive number.•For long-distance buses a full occupan...

Full description

Saved in:
Bibliographic Details
Published in:Di xue qian yuan. 2022-11, Vol.13 (6), p.101398, Article 101398
Main Authors: Bertone, M., Mikszewski, A., Stabile, L., Riccio, G., Cortellessa, G., d'Ambrosio, F.R., Papa, V., Morawska, L., Buonanno, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Novel combination of close proximity and room-scale risk assessment approaches.•Prediction of contagious risk due to SARS-CoV-2 respiratory infection in buses.•For urban buses the close proximity significantly affects the reproductive number.•For long-distance buses a full occupancy of the bus can hardly be maintained.•Appropriate filtration of recirculated air and FFP2 masks permit full occupancy. Public transport environments are thought to play a key role in the spread of SARS-CoV-2 worldwide. Indeed, high crowding indexes (i.e. high numbers of people relative to the vehicle size), inadequate clean air supply, and frequent extended exposure durations make transport environments potential hotspots for transmission of respiratory infections. During the COVID-19 pandemic, generic mitigation measures (e.g. physical distancing) have been applied without also considering the airborne transmission route. This is due to the lack of quantified data about airborne contagion risk in transport environments. In this study, we apply a novel combination of close proximity and room-scale risk assessment approaches for people sharing public transport environments to predict their contagion risk due to SARS-CoV-2 respiratory infection. In particular, the individual infection risk of susceptible subjects and the transmissibility of SARS-CoV-2 (expressed through the reproduction number) are evaluated for two types of buses, differing in terms of exposure time and crowding index: urban and long-distance buses. Infection risk and reproduction number are calculated for different scenarios as a function of the ventilation rates (both measured and estimated according to standards), crowding indexes, and travel times. The results show that for urban buses, the close proximity contribution significantly affects the maximum occupancy to maintain a reproductive number of 80%) would be needed.
ISSN:1674-9871
2588-9192
1674-9871
DOI:10.1016/j.gsf.2022.101398