Loading…
Ultrasensitive Label-Free Detection of Protein–Membrane Interaction Exemplified by Toxin-Liposome Insertion
Measuring the high-affinity binding of proteins to liposome membranes remains a challenge. Here, we show an ultrasensitive and direct detection of protein binding to liposome membranes using high throughput second harmonic scattering (SHS). Perfringolysin O (PFO), a pore-forming toxin, with a highly...
Saved in:
Published in: | The journal of physical chemistry letters 2022-04, Vol.13 (14), p.3197-3201 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring the high-affinity binding of proteins to liposome membranes remains a challenge. Here, we show an ultrasensitive and direct detection of protein binding to liposome membranes using high throughput second harmonic scattering (SHS). Perfringolysin O (PFO), a pore-forming toxin, with a highly membrane selective insertion into cholesterol-rich membranes is used. PFO inserts only into liposomes with a cholesterol concentration >30%. Twenty mole-percent cholesterol results in neither SHS-signal deviation nor pore formation as seen by cryo-electron microscopy of PFO and liposomes. PFO inserts into cholesterol-rich membranes of large unilamellar vesicles in an aqueous solution with K d = (1.5 ± 0.2) × 10–12 M. Our results demonstrate a promising approach to probe protein–membrane interactions below sub-picomolar concentrations in a label-free and noninvasive manner on 3D systems. More importantly, the volume of protein sample is ultrasmall ( |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.1c04011 |