Loading…

Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods

The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations,...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-04, Vol.15 (8), p.2884
Main Authors: Jaśkowiec, Krzysztof, Wilk-Kołodziejczyk, Dorota, Bartłomiej, Śnieżyński, Reczek, Witor, Bitka, Adam, Małysza, Marcin, Doroszewski, Maciej, Pirowski, Zenon, Boroń, Łukasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53
cites cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53
container_end_page
container_issue 8
container_start_page 2884
container_title Materials
container_volume 15
creator Jaśkowiec, Krzysztof
Wilk-Kołodziejczyk, Dorota
Bartłomiej, Śnieżyński
Reczek, Witor
Bitka, Adam
Małysza, Marcin
Doroszewski, Maciej
Pirowski, Zenon
Boroń, Łukasz
description The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.
doi_str_mv 10.3390/ma15082884
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654292457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxUNRqqy-9AOUgC9F2Jo_k5nJiyCLtoUVLXRfDdfMHWdkJmNzZwS_vVl3tdbk4V6SH-few2HsixTftbbipAdpRKnKMvvE9qW1-VzaLNt51--xQ6J7kY7WslT2M9vTJku3yPfZzRkREvUYRj7UfGyQ_56ga8cnDqHil-gbCK2Hjl9DhB5HjLQGF0BjG-6IrygVfgm-aQPyJUIMLw84NkNFB2y3ho7wcFtnbHVx_mfxc768-vFrcbac-0zk47yqhEWpvDXeFGUuKrAFGKxNjbfKZIWs6tJbEIVVmba5lcqYAqQGIdEUaPSMnW50H6bbHiuf7ETo3ENse4hPboDW_f8T2sbdDY_OCpXUVBL4thWIw98JaXR9Sx67DgIOEzmVm0yl6aZI6NEH9H6YYkj21pQWUpZlnqjjDeXjQBSxfltGCrdOzv1LLsFf36__hr7mpJ8BHu6TQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653011886</pqid></control><display><type>article</type><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</creator><creatorcontrib>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</creatorcontrib><description>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15082884</identifier><identifier>PMID: 35454576</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Approximation ; Cast iron ; Casting machines ; Castings ; Deep learning ; Literature reviews ; Machine learning ; Mechanical properties ; Microstructure ; Neural networks ; Quality assessment ; Scientific papers ; Tensile strength ; Variables</subject><ispartof>Materials, 2022-04, Vol.15 (8), p.2884</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</citedby><cites>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</cites><orcidid>0000-0002-0569-1192 ; 0000-0002-2342-5023 ; 0000-0003-4588-3444 ; 0000-0002-7484-1393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2653011886/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2653011886?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35454576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaśkowiec, Krzysztof</creatorcontrib><creatorcontrib>Wilk-Kołodziejczyk, Dorota</creatorcontrib><creatorcontrib>Bartłomiej, Śnieżyński</creatorcontrib><creatorcontrib>Reczek, Witor</creatorcontrib><creatorcontrib>Bitka, Adam</creatorcontrib><creatorcontrib>Małysza, Marcin</creatorcontrib><creatorcontrib>Doroszewski, Maciej</creatorcontrib><creatorcontrib>Pirowski, Zenon</creatorcontrib><creatorcontrib>Boroń, Łukasz</creatorcontrib><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cast iron</subject><subject>Casting machines</subject><subject>Castings</subject><subject>Deep learning</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Quality assessment</subject><subject>Scientific papers</subject><subject>Tensile strength</subject><subject>Variables</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV9LHDEUxUNRqqy-9AOUgC9F2Jo_k5nJiyCLtoUVLXRfDdfMHWdkJmNzZwS_vVl3tdbk4V6SH-few2HsixTftbbipAdpRKnKMvvE9qW1-VzaLNt51--xQ6J7kY7WslT2M9vTJku3yPfZzRkREvUYRj7UfGyQ_56ga8cnDqHil-gbCK2Hjl9DhB5HjLQGF0BjG-6IrygVfgm-aQPyJUIMLw84NkNFB2y3ho7wcFtnbHVx_mfxc768-vFrcbac-0zk47yqhEWpvDXeFGUuKrAFGKxNjbfKZIWs6tJbEIVVmba5lcqYAqQGIdEUaPSMnW50H6bbHiuf7ETo3ENse4hPboDW_f8T2sbdDY_OCpXUVBL4thWIw98JaXR9Sx67DgIOEzmVm0yl6aZI6NEH9H6YYkj21pQWUpZlnqjjDeXjQBSxfltGCrdOzv1LLsFf36__hr7mpJ8BHu6TQg</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Jaśkowiec, Krzysztof</creator><creator>Wilk-Kołodziejczyk, Dorota</creator><creator>Bartłomiej, Śnieżyński</creator><creator>Reczek, Witor</creator><creator>Bitka, Adam</creator><creator>Małysza, Marcin</creator><creator>Doroszewski, Maciej</creator><creator>Pirowski, Zenon</creator><creator>Boroń, Łukasz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0569-1192</orcidid><orcidid>https://orcid.org/0000-0002-2342-5023</orcidid><orcidid>https://orcid.org/0000-0003-4588-3444</orcidid><orcidid>https://orcid.org/0000-0002-7484-1393</orcidid></search><sort><creationdate>20220414</creationdate><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><author>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cast iron</topic><topic>Casting machines</topic><topic>Castings</topic><topic>Deep learning</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Quality assessment</topic><topic>Scientific papers</topic><topic>Tensile strength</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaśkowiec, Krzysztof</creatorcontrib><creatorcontrib>Wilk-Kołodziejczyk, Dorota</creatorcontrib><creatorcontrib>Bartłomiej, Śnieżyński</creatorcontrib><creatorcontrib>Reczek, Witor</creatorcontrib><creatorcontrib>Bitka, Adam</creatorcontrib><creatorcontrib>Małysza, Marcin</creatorcontrib><creatorcontrib>Doroszewski, Maciej</creatorcontrib><creatorcontrib>Pirowski, Zenon</creatorcontrib><creatorcontrib>Boroń, Łukasz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaśkowiec, Krzysztof</au><au>Wilk-Kołodziejczyk, Dorota</au><au>Bartłomiej, Śnieżyński</au><au>Reczek, Witor</au><au>Bitka, Adam</au><au>Małysza, Marcin</au><au>Doroszewski, Maciej</au><au>Pirowski, Zenon</au><au>Boroń, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-04-14</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>2884</spage><pages>2884-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35454576</pmid><doi>10.3390/ma15082884</doi><orcidid>https://orcid.org/0000-0002-0569-1192</orcidid><orcidid>https://orcid.org/0000-0002-2342-5023</orcidid><orcidid>https://orcid.org/0000-0003-4588-3444</orcidid><orcidid>https://orcid.org/0000-0002-7484-1393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-04, Vol.15 (8), p.2884
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029122
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Approximation
Cast iron
Casting machines
Castings
Deep learning
Literature reviews
Machine learning
Mechanical properties
Microstructure
Neural networks
Quality assessment
Scientific papers
Tensile strength
Variables
title Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20Quality%20and%20Mechanical%20Parameters%20of%20Castings%20Using%20Machine%20Learning%20Methods&rft.jtitle=Materials&rft.au=Ja%C5%9Bkowiec,%20Krzysztof&rft.date=2022-04-14&rft.volume=15&rft.issue=8&rft.spage=2884&rft.pages=2884-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15082884&rft_dat=%3Cproquest_pubme%3E2654292457%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653011886&rft_id=info:pmid/35454576&rfr_iscdi=true