Loading…
Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods
The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations,...
Saved in:
Published in: | Materials 2022-04, Vol.15 (8), p.2884 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53 |
container_end_page | |
container_issue | 8 |
container_start_page | 2884 |
container_title | Materials |
container_volume | 15 |
creator | Jaśkowiec, Krzysztof Wilk-Kołodziejczyk, Dorota Bartłomiej, Śnieżyński Reczek, Witor Bitka, Adam Małysza, Marcin Doroszewski, Maciej Pirowski, Zenon Boroń, Łukasz |
description | The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time. |
doi_str_mv | 10.3390/ma15082884 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654292457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxUNRqqy-9AOUgC9F2Jo_k5nJiyCLtoUVLXRfDdfMHWdkJmNzZwS_vVl3tdbk4V6SH-few2HsixTftbbipAdpRKnKMvvE9qW1-VzaLNt51--xQ6J7kY7WslT2M9vTJku3yPfZzRkREvUYRj7UfGyQ_56ga8cnDqHil-gbCK2Hjl9DhB5HjLQGF0BjG-6IrygVfgm-aQPyJUIMLw84NkNFB2y3ho7wcFtnbHVx_mfxc768-vFrcbac-0zk47yqhEWpvDXeFGUuKrAFGKxNjbfKZIWs6tJbEIVVmba5lcqYAqQGIdEUaPSMnW50H6bbHiuf7ETo3ENse4hPboDW_f8T2sbdDY_OCpXUVBL4thWIw98JaXR9Sx67DgIOEzmVm0yl6aZI6NEH9H6YYkj21pQWUpZlnqjjDeXjQBSxfltGCrdOzv1LLsFf36__hr7mpJ8BHu6TQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653011886</pqid></control><display><type>article</type><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</creator><creatorcontrib>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</creatorcontrib><description>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15082884</identifier><identifier>PMID: 35454576</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Approximation ; Cast iron ; Casting machines ; Castings ; Deep learning ; Literature reviews ; Machine learning ; Mechanical properties ; Microstructure ; Neural networks ; Quality assessment ; Scientific papers ; Tensile strength ; Variables</subject><ispartof>Materials, 2022-04, Vol.15 (8), p.2884</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</citedby><cites>FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</cites><orcidid>0000-0002-0569-1192 ; 0000-0002-2342-5023 ; 0000-0003-4588-3444 ; 0000-0002-7484-1393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2653011886/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2653011886?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35454576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaśkowiec, Krzysztof</creatorcontrib><creatorcontrib>Wilk-Kołodziejczyk, Dorota</creatorcontrib><creatorcontrib>Bartłomiej, Śnieżyński</creatorcontrib><creatorcontrib>Reczek, Witor</creatorcontrib><creatorcontrib>Bitka, Adam</creatorcontrib><creatorcontrib>Małysza, Marcin</creatorcontrib><creatorcontrib>Doroszewski, Maciej</creatorcontrib><creatorcontrib>Pirowski, Zenon</creatorcontrib><creatorcontrib>Boroń, Łukasz</creatorcontrib><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cast iron</subject><subject>Casting machines</subject><subject>Castings</subject><subject>Deep learning</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Quality assessment</subject><subject>Scientific papers</subject><subject>Tensile strength</subject><subject>Variables</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV9LHDEUxUNRqqy-9AOUgC9F2Jo_k5nJiyCLtoUVLXRfDdfMHWdkJmNzZwS_vVl3tdbk4V6SH-few2HsixTftbbipAdpRKnKMvvE9qW1-VzaLNt51--xQ6J7kY7WslT2M9vTJku3yPfZzRkREvUYRj7UfGyQ_56ga8cnDqHil-gbCK2Hjl9DhB5HjLQGF0BjG-6IrygVfgm-aQPyJUIMLw84NkNFB2y3ho7wcFtnbHVx_mfxc768-vFrcbac-0zk47yqhEWpvDXeFGUuKrAFGKxNjbfKZIWs6tJbEIVVmba5lcqYAqQGIdEUaPSMnW50H6bbHiuf7ETo3ENse4hPboDW_f8T2sbdDY_OCpXUVBL4thWIw98JaXR9Sx67DgIOEzmVm0yl6aZI6NEH9H6YYkj21pQWUpZlnqjjDeXjQBSxfltGCrdOzv1LLsFf36__hr7mpJ8BHu6TQg</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Jaśkowiec, Krzysztof</creator><creator>Wilk-Kołodziejczyk, Dorota</creator><creator>Bartłomiej, Śnieżyński</creator><creator>Reczek, Witor</creator><creator>Bitka, Adam</creator><creator>Małysza, Marcin</creator><creator>Doroszewski, Maciej</creator><creator>Pirowski, Zenon</creator><creator>Boroń, Łukasz</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0569-1192</orcidid><orcidid>https://orcid.org/0000-0002-2342-5023</orcidid><orcidid>https://orcid.org/0000-0003-4588-3444</orcidid><orcidid>https://orcid.org/0000-0002-7484-1393</orcidid></search><sort><creationdate>20220414</creationdate><title>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</title><author>Jaśkowiec, Krzysztof ; Wilk-Kołodziejczyk, Dorota ; Bartłomiej, Śnieżyński ; Reczek, Witor ; Bitka, Adam ; Małysza, Marcin ; Doroszewski, Maciej ; Pirowski, Zenon ; Boroń, Łukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cast iron</topic><topic>Casting machines</topic><topic>Castings</topic><topic>Deep learning</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Quality assessment</topic><topic>Scientific papers</topic><topic>Tensile strength</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaśkowiec, Krzysztof</creatorcontrib><creatorcontrib>Wilk-Kołodziejczyk, Dorota</creatorcontrib><creatorcontrib>Bartłomiej, Śnieżyński</creatorcontrib><creatorcontrib>Reczek, Witor</creatorcontrib><creatorcontrib>Bitka, Adam</creatorcontrib><creatorcontrib>Małysza, Marcin</creatorcontrib><creatorcontrib>Doroszewski, Maciej</creatorcontrib><creatorcontrib>Pirowski, Zenon</creatorcontrib><creatorcontrib>Boroń, Łukasz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaśkowiec, Krzysztof</au><au>Wilk-Kołodziejczyk, Dorota</au><au>Bartłomiej, Śnieżyński</au><au>Reczek, Witor</au><au>Bitka, Adam</au><au>Małysza, Marcin</au><au>Doroszewski, Maciej</au><au>Pirowski, Zenon</au><au>Boroń, Łukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-04-14</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>2884</spage><pages>2884-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The aim of the work is to investigate the effectiveness of selected classification algorithms and their extensions in assessing microstructure of castings. Experiments were carried out in which the prepared algorithms and machine learning methods were tested in various conditions and configurations, as well as for various input data, which are photos of castings (photos of the microstructure) or information about the material (e.g., type, composition). As shown by the literature review, there are few scientific papers on this subject (i.e., in the use of machine learning to assess the quality of the microstructure and the obtained strength properties of cast iron). The effectiveness of machine learning algorithms in assessing the quality of castings will be tested using the most universal methods. Results obtained by classic machine learning methods and by neural networks will be compared with each other, taking into account aspects such as interpretability of results, ease of model implementation, algorithm simplicity, and learning time.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35454576</pmid><doi>10.3390/ma15082884</doi><orcidid>https://orcid.org/0000-0002-0569-1192</orcidid><orcidid>https://orcid.org/0000-0002-2342-5023</orcidid><orcidid>https://orcid.org/0000-0003-4588-3444</orcidid><orcidid>https://orcid.org/0000-0002-7484-1393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-04, Vol.15 (8), p.2884 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029122 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Approximation Cast iron Casting machines Castings Deep learning Literature reviews Machine learning Mechanical properties Microstructure Neural networks Quality assessment Scientific papers Tensile strength Variables |
title | Assessment of the Quality and Mechanical Parameters of Castings Using Machine Learning Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20Quality%20and%20Mechanical%20Parameters%20of%20Castings%20Using%20Machine%20Learning%20Methods&rft.jtitle=Materials&rft.au=Ja%C5%9Bkowiec,%20Krzysztof&rft.date=2022-04-14&rft.volume=15&rft.issue=8&rft.spage=2884&rft.pages=2884-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15082884&rft_dat=%3Cproquest_pubme%3E2654292457%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-dd09e12c95c57860da97a5ef5feb25471df8c9a07924396912557a13a01e57e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653011886&rft_id=info:pmid/35454576&rfr_iscdi=true |