Loading…

A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography

In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measu...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2021-03, Vol.66 (5), p.55029
Main Authors: McGarry, Matthew, Houten, Elijah Van, Guertler, Charlotte, Okamoto, Ruth, Smith, Daniel, Sowinski, Damian, Johnson, Curtis, Bayly, Philip, Weaver, John, Paulsen, Keith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3
cites cdi_FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3
container_end_page
container_issue 5
container_start_page 55029
container_title Physics in medicine & biology
container_volume 66
creator McGarry, Matthew
Houten, Elijah Van
Guertler, Charlotte
Okamoto, Ruth
Smith, Daniel
Sowinski, Damian
Johnson, Curtis
Bayly, Philip
Weaver, John
Paulsen, Keith
description In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated against analytical solutions and a commercial FEM package, and is suitable for incorporation into nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a realistic setting where the ground truth and underlying mechanical behavior are known. Two established isotropic inversion algorithms-nonlinear inversion (NLI) and local direct inversion (LDI)-were applied to simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. NLI was able to recover accurate heterogenous displacement fields in the presence of measurement noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced maps of isotropic mechanical properties with undesirable dependence on the wavefield. Local anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% in the anisotropic structures.
doi_str_mv 10.1088/1361-6560/ab9a84
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411109504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1pabZp7z0VH3vINJY9nrUvhRD6BSmBkJ6NxyPvuszYU9sb2D-Q351ZNl3aiwTSq1dCDyHvgX0CptQliA6aTnbs0vbaqvYFWZ1KL8mKMQGNBinPyJtSfjMGoHj7mpwJLoHLVq3I4xXdYsWcNhjTrlzQGiakW5unFIO7oBFtHvc0RJemOWMpoR-R1mxjecBckIaSak5zcNSHGCpSHHHCWGmfbYi0hGk32hpSpPOSfcoTXQL9ebcIbalpk-283b8lr7wdC757zufk19cv99ffm5vbbz-ur24aJ3RXG8098E631nOhHGfcD3xQ0Asv11Zo3-mBg5PCyjWsOwVeiUG2rVdKCtn1VpyTz0ffeddPOLjl0GxHM-cw2bw3yQbzfyeGrdmkB6MZ13rNF4OPzwY5_dlhqWYKxeE42ojL_wxvAYBpydpFyo5Sl1MpGf1pDTBzwGcOrMyBlTniW0Y-_HveaeAvL_EEgW6aNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411109504</pqid></control><display><type>article</type><title>A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>McGarry, Matthew ; Houten, Elijah Van ; Guertler, Charlotte ; Okamoto, Ruth ; Smith, Daniel ; Sowinski, Damian ; Johnson, Curtis ; Bayly, Philip ; Weaver, John ; Paulsen, Keith</creator><creatorcontrib>McGarry, Matthew ; Houten, Elijah Van ; Guertler, Charlotte ; Okamoto, Ruth ; Smith, Daniel ; Sowinski, Damian ; Johnson, Curtis ; Bayly, Philip ; Weaver, John ; Paulsen, Keith</creatorcontrib><description>In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated against analytical solutions and a commercial FEM package, and is suitable for incorporation into nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a realistic setting where the ground truth and underlying mechanical behavior are known. Two established isotropic inversion algorithms-nonlinear inversion (NLI) and local direct inversion (LDI)-were applied to simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. NLI was able to recover accurate heterogenous displacement fields in the presence of measurement noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced maps of isotropic mechanical properties with undesirable dependence on the wavefield. Local anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% in the anisotropic structures.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab9a84</identifier><identifier>PMID: 32512548</identifier><language>eng</language><publisher>England</publisher><subject>Anisotropy ; Brain - diagnostic imaging ; Brain - physiology ; Deep Brain Stimulation - methods ; Diffusion Tensor Imaging ; Elasticity Imaging Techniques ; Models, Biological</subject><ispartof>Physics in medicine &amp; biology, 2021-03, Vol.66 (5), p.55029</ispartof><rights>2021 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3</citedby><cites>FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3</cites><orcidid>0000-0003-3136-7449 ; 0000-0003-0605-0239 ; 0000-0001-8430-800X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32512548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGarry, Matthew</creatorcontrib><creatorcontrib>Houten, Elijah Van</creatorcontrib><creatorcontrib>Guertler, Charlotte</creatorcontrib><creatorcontrib>Okamoto, Ruth</creatorcontrib><creatorcontrib>Smith, Daniel</creatorcontrib><creatorcontrib>Sowinski, Damian</creatorcontrib><creatorcontrib>Johnson, Curtis</creatorcontrib><creatorcontrib>Bayly, Philip</creatorcontrib><creatorcontrib>Weaver, John</creatorcontrib><creatorcontrib>Paulsen, Keith</creatorcontrib><title>A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated against analytical solutions and a commercial FEM package, and is suitable for incorporation into nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a realistic setting where the ground truth and underlying mechanical behavior are known. Two established isotropic inversion algorithms-nonlinear inversion (NLI) and local direct inversion (LDI)-were applied to simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. NLI was able to recover accurate heterogenous displacement fields in the presence of measurement noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced maps of isotropic mechanical properties with undesirable dependence on the wavefield. Local anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% in the anisotropic structures.</description><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Deep Brain Stimulation - methods</subject><subject>Diffusion Tensor Imaging</subject><subject>Elasticity Imaging Techniques</subject><subject>Models, Biological</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1rHDEMhk1pabZp7z0VH3vINJY9nrUvhRD6BSmBkJ6NxyPvuszYU9sb2D-Q351ZNl3aiwTSq1dCDyHvgX0CptQliA6aTnbs0vbaqvYFWZ1KL8mKMQGNBinPyJtSfjMGoHj7mpwJLoHLVq3I4xXdYsWcNhjTrlzQGiakW5unFIO7oBFtHvc0RJemOWMpoR-R1mxjecBckIaSak5zcNSHGCpSHHHCWGmfbYi0hGk32hpSpPOSfcoTXQL9ebcIbalpk-283b8lr7wdC757zufk19cv99ffm5vbbz-ur24aJ3RXG8098E631nOhHGfcD3xQ0Asv11Zo3-mBg5PCyjWsOwVeiUG2rVdKCtn1VpyTz0ffeddPOLjl0GxHM-cw2bw3yQbzfyeGrdmkB6MZ13rNF4OPzwY5_dlhqWYKxeE42ojL_wxvAYBpydpFyo5Sl1MpGf1pDTBzwGcOrMyBlTniW0Y-_HveaeAvL_EEgW6aNw</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>McGarry, Matthew</creator><creator>Houten, Elijah Van</creator><creator>Guertler, Charlotte</creator><creator>Okamoto, Ruth</creator><creator>Smith, Daniel</creator><creator>Sowinski, Damian</creator><creator>Johnson, Curtis</creator><creator>Bayly, Philip</creator><creator>Weaver, John</creator><creator>Paulsen, Keith</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3136-7449</orcidid><orcidid>https://orcid.org/0000-0003-0605-0239</orcidid><orcidid>https://orcid.org/0000-0001-8430-800X</orcidid></search><sort><creationdate>20210307</creationdate><title>A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography</title><author>McGarry, Matthew ; Houten, Elijah Van ; Guertler, Charlotte ; Okamoto, Ruth ; Smith, Daniel ; Sowinski, Damian ; Johnson, Curtis ; Bayly, Philip ; Weaver, John ; Paulsen, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Deep Brain Stimulation - methods</topic><topic>Diffusion Tensor Imaging</topic><topic>Elasticity Imaging Techniques</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGarry, Matthew</creatorcontrib><creatorcontrib>Houten, Elijah Van</creatorcontrib><creatorcontrib>Guertler, Charlotte</creatorcontrib><creatorcontrib>Okamoto, Ruth</creatorcontrib><creatorcontrib>Smith, Daniel</creatorcontrib><creatorcontrib>Sowinski, Damian</creatorcontrib><creatorcontrib>Johnson, Curtis</creatorcontrib><creatorcontrib>Bayly, Philip</creatorcontrib><creatorcontrib>Weaver, John</creatorcontrib><creatorcontrib>Paulsen, Keith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGarry, Matthew</au><au>Houten, Elijah Van</au><au>Guertler, Charlotte</au><au>Okamoto, Ruth</au><au>Smith, Daniel</au><au>Sowinski, Damian</au><au>Johnson, Curtis</au><au>Bayly, Philip</au><au>Weaver, John</au><au>Paulsen, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2021-03-07</date><risdate>2021</risdate><volume>66</volume><issue>5</issue><spage>55029</spage><pages>55029-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated against analytical solutions and a commercial FEM package, and is suitable for incorporation into nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a realistic setting where the ground truth and underlying mechanical behavior are known. Two established isotropic inversion algorithms-nonlinear inversion (NLI) and local direct inversion (LDI)-were applied to simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. NLI was able to recover accurate heterogenous displacement fields in the presence of measurement noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced maps of isotropic mechanical properties with undesirable dependence on the wavefield. Local anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% in the anisotropic structures.</abstract><cop>England</cop><pmid>32512548</pmid><doi>10.1088/1361-6560/ab9a84</doi><orcidid>https://orcid.org/0000-0003-3136-7449</orcidid><orcidid>https://orcid.org/0000-0003-0605-0239</orcidid><orcidid>https://orcid.org/0000-0001-8430-800X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2021-03, Vol.66 (5), p.55029
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029972
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Anisotropy
Brain - diagnostic imaging
Brain - physiology
Deep Brain Stimulation - methods
Diffusion Tensor Imaging
Elasticity Imaging Techniques
Models, Biological
title A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20heterogenous,%20time%20harmonic,%20nearly%20incompressible%20transverse%20isotropic%20finite%20element%20brain%20simulation%20platform%20for%20MR%20elastography&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=McGarry,%20Matthew&rft.date=2021-03-07&rft.volume=66&rft.issue=5&rft.spage=55029&rft.pages=55029-&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/1361-6560/ab9a84&rft_dat=%3Cproquest_pubme%3E2411109504%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-92f12694af238c202fd2d81b3f57a39f69d21c53a5717681f83d544f885356ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411109504&rft_id=info:pmid/32512548&rfr_iscdi=true