Loading…

The Influence of Low-Energy Impact Loads on the Properties of the Sandwich Composite with a Foam Core

Composite materials are widely used in the construction of means of transport. Due to their low density and high stiffness, sandwich composites generate significant interest. The authors conducted static and dynamic tests in order to determine the effect of density and core thickness on the mechanic...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-04, Vol.14 (8), p.1566
Main Authors: Komorek, Andrzej, Przybyłek, Paweł, Szczepaniak, Robert, Godzimirski, Jan, Rośkowicz, Marek, Imiłowski, Szymon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Composite materials are widely used in the construction of means of transport. Due to their low density and high stiffness, sandwich composites generate significant interest. The authors conducted static and dynamic tests in order to determine the effect of density and core thickness on the mechanical properties of a sandwich composite. Particular attention was paid to the impact properties of such composites. Herex and Airex polymer foams of different densities were used as cores, whereas the faces were made up of two layers of fabrics: glass and carbon. The matrix base of the tested materials was made of epoxy resin cured with a dedicated hardener. As a result of the study, a significant influence of the core on the strength parameters of the tested spacer materials was found. The examined polymer foams were found to have different adhesive properties, which affected their residual strength after an impact and the nature of destruction of the studied composites. It was observed that sandwich composites with a thicker core of higher density have higher impact strength and resistance to puncture. In the sandwich composites, low-energy impact loads result in damage only to the layer to which the load has been applied and has a core, so repairing such an element is much easier than in classic layered composites without a core. What is very important is that, in contrast to classic laminates, the bottom cover of the composite is not destroyed at low-impact energy values.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14081566