Loading…

Spatially distributed computation in cortical circuits

The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to on...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2022-04, Vol.8 (16), p.eabl5865-eabl5865
Main Authors: Gepshtein, Sergei, Pawar, Ambarish S, Kwon, Sunwoo, Savel'ev, Sergey, Albright, Thomas D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073
cites cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073
container_end_page eabl5865
container_issue 16
container_start_page eabl5865
container_title Science advances
container_volume 8
creator Gepshtein, Sergei
Pawar, Ambarish S
Kwon, Sunwoo
Savel'ev, Sergey
Albright, Thomas D
description The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.
doi_str_mv 10.1126/sciadv.abl5865
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654282021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePcoevWzNx2Y3uQhS_IKCB_UcJtmsRrK7NckW-t-70lrqaWaYN-8NP4QuCV4QQsubaBzUmwVoz0XJT9CUsornlBfi9KifoHmMXxhjUpQlJ_IcTRgvOKVCTFH5uobkwPttVruYgtNDsnVm-nY9pHHTd5nrxjEkZ8BnxgUzuBQv0FkDPtr5vs7Q-8P92_IpX708Pi_vVrlhEqdcWGKJJpTKSlQGrJW6ahhohjnXwKHhNTS65o0UtNCyZlZaKipiCl3SCldshm53vutBt7Y2tksBvFoH10LYqh6c-r_p3Kf66DdKYjaGFqPB9d4g9N-DjUm1LhrrPXS2H6KiJS-ooJiSUbrYSU3oYwy2OcQQrH55qx1vtec9HlwdP3eQ_9FlP_7kf7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654282021</pqid></control><display><type>article</type><title>Spatially distributed computation in cortical circuits</title><source>Science Online</source><source>PubMed Central</source><creator>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</creator><creatorcontrib>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</creatorcontrib><description>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abl5865</identifier><identifier>PMID: 35452288</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Physics ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2022-04, Vol.8 (16), p.eabl5865-eabl5865</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</citedby><cites>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</cites><orcidid>0000-0002-5761-6629 ; 0000-0002-7756-0837 ; 0000-0002-6328-7972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032974/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032974/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2882,2883,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gepshtein, Sergei</creatorcontrib><creatorcontrib>Pawar, Ambarish S</creatorcontrib><creatorcontrib>Kwon, Sunwoo</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Albright, Thomas D</creatorcontrib><title>Spatially distributed computation in cortical circuits</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</description><subject>Applied Physics</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottRePcoevWzNx2Y3uQhS_IKCB_UcJtmsRrK7NckW-t-70lrqaWaYN-8NP4QuCV4QQsubaBzUmwVoz0XJT9CUsornlBfi9KifoHmMXxhjUpQlJ_IcTRgvOKVCTFH5uobkwPttVruYgtNDsnVm-nY9pHHTd5nrxjEkZ8BnxgUzuBQv0FkDPtr5vs7Q-8P92_IpX708Pi_vVrlhEqdcWGKJJpTKSlQGrJW6ahhohjnXwKHhNTS65o0UtNCyZlZaKipiCl3SCldshm53vutBt7Y2tksBvFoH10LYqh6c-r_p3Kf66DdKYjaGFqPB9d4g9N-DjUm1LhrrPXS2H6KiJS-ooJiSUbrYSU3oYwy2OcQQrH55qx1vtec9HlwdP3eQ_9FlP_7kf7M</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Gepshtein, Sergei</creator><creator>Pawar, Ambarish S</creator><creator>Kwon, Sunwoo</creator><creator>Savel'ev, Sergey</creator><creator>Albright, Thomas D</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5761-6629</orcidid><orcidid>https://orcid.org/0000-0002-7756-0837</orcidid><orcidid>https://orcid.org/0000-0002-6328-7972</orcidid></search><sort><creationdate>20220422</creationdate><title>Spatially distributed computation in cortical circuits</title><author>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Physics</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gepshtein, Sergei</creatorcontrib><creatorcontrib>Pawar, Ambarish S</creatorcontrib><creatorcontrib>Kwon, Sunwoo</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Albright, Thomas D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gepshtein, Sergei</au><au>Pawar, Ambarish S</au><au>Kwon, Sunwoo</au><au>Savel'ev, Sergey</au><au>Albright, Thomas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially distributed computation in cortical circuits</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-04-22</date><risdate>2022</risdate><volume>8</volume><issue>16</issue><spage>eabl5865</spage><epage>eabl5865</epage><pages>eabl5865-eabl5865</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35452288</pmid><doi>10.1126/sciadv.abl5865</doi><orcidid>https://orcid.org/0000-0002-5761-6629</orcidid><orcidid>https://orcid.org/0000-0002-7756-0837</orcidid><orcidid>https://orcid.org/0000-0002-6328-7972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-04, Vol.8 (16), p.eabl5865-eabl5865
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032974
source Science Online; PubMed Central
subjects Applied Physics
Neuroscience
SciAdv r-articles
title Spatially distributed computation in cortical circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20distributed%20computation%20in%20cortical%20circuits&rft.jtitle=Science%20advances&rft.au=Gepshtein,%20Sergei&rft.date=2022-04-22&rft.volume=8&rft.issue=16&rft.spage=eabl5865&rft.epage=eabl5865&rft.pages=eabl5865-eabl5865&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abl5865&rft_dat=%3Cproquest_pubme%3E2654282021%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2654282021&rft_id=info:pmid/35452288&rfr_iscdi=true