Loading…
Spatially distributed computation in cortical circuits
The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to on...
Saved in:
Published in: | Science advances 2022-04, Vol.8 (16), p.eabl5865-eabl5865 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073 |
container_end_page | eabl5865 |
container_issue | 16 |
container_start_page | eabl5865 |
container_title | Science advances |
container_volume | 8 |
creator | Gepshtein, Sergei Pawar, Ambarish S Kwon, Sunwoo Savel'ev, Sergey Albright, Thomas D |
description | The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation. |
doi_str_mv | 10.1126/sciadv.abl5865 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654282021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePcoevWzNx2Y3uQhS_IKCB_UcJtmsRrK7NckW-t-70lrqaWaYN-8NP4QuCV4QQsubaBzUmwVoz0XJT9CUsornlBfi9KifoHmMXxhjUpQlJ_IcTRgvOKVCTFH5uobkwPttVruYgtNDsnVm-nY9pHHTd5nrxjEkZ8BnxgUzuBQv0FkDPtr5vs7Q-8P92_IpX708Pi_vVrlhEqdcWGKJJpTKSlQGrJW6ahhohjnXwKHhNTS65o0UtNCyZlZaKipiCl3SCldshm53vutBt7Y2tksBvFoH10LYqh6c-r_p3Kf66DdKYjaGFqPB9d4g9N-DjUm1LhrrPXS2H6KiJS-ooJiSUbrYSU3oYwy2OcQQrH55qx1vtec9HlwdP3eQ_9FlP_7kf7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654282021</pqid></control><display><type>article</type><title>Spatially distributed computation in cortical circuits</title><source>Science Online</source><source>PubMed Central</source><creator>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</creator><creatorcontrib>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</creatorcontrib><description>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abl5865</identifier><identifier>PMID: 35452288</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Physics ; Neuroscience ; SciAdv r-articles</subject><ispartof>Science advances, 2022-04, Vol.8 (16), p.eabl5865-eabl5865</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</citedby><cites>FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</cites><orcidid>0000-0002-5761-6629 ; 0000-0002-7756-0837 ; 0000-0002-6328-7972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032974/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032974/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2882,2883,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gepshtein, Sergei</creatorcontrib><creatorcontrib>Pawar, Ambarish S</creatorcontrib><creatorcontrib>Kwon, Sunwoo</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Albright, Thomas D</creatorcontrib><title>Spatially distributed computation in cortical circuits</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</description><subject>Applied Physics</subject><subject>Neuroscience</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottRePcoevWzNx2Y3uQhS_IKCB_UcJtmsRrK7NckW-t-70lrqaWaYN-8NP4QuCV4QQsubaBzUmwVoz0XJT9CUsornlBfi9KifoHmMXxhjUpQlJ_IcTRgvOKVCTFH5uobkwPttVruYgtNDsnVm-nY9pHHTd5nrxjEkZ8BnxgUzuBQv0FkDPtr5vs7Q-8P92_IpX708Pi_vVrlhEqdcWGKJJpTKSlQGrJW6ahhohjnXwKHhNTS65o0UtNCyZlZaKipiCl3SCldshm53vutBt7Y2tksBvFoH10LYqh6c-r_p3Kf66DdKYjaGFqPB9d4g9N-DjUm1LhrrPXS2H6KiJS-ooJiSUbrYSU3oYwy2OcQQrH55qx1vtec9HlwdP3eQ_9FlP_7kf7M</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Gepshtein, Sergei</creator><creator>Pawar, Ambarish S</creator><creator>Kwon, Sunwoo</creator><creator>Savel'ev, Sergey</creator><creator>Albright, Thomas D</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5761-6629</orcidid><orcidid>https://orcid.org/0000-0002-7756-0837</orcidid><orcidid>https://orcid.org/0000-0002-6328-7972</orcidid></search><sort><creationdate>20220422</creationdate><title>Spatially distributed computation in cortical circuits</title><author>Gepshtein, Sergei ; Pawar, Ambarish S ; Kwon, Sunwoo ; Savel'ev, Sergey ; Albright, Thomas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Physics</topic><topic>Neuroscience</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gepshtein, Sergei</creatorcontrib><creatorcontrib>Pawar, Ambarish S</creatorcontrib><creatorcontrib>Kwon, Sunwoo</creatorcontrib><creatorcontrib>Savel'ev, Sergey</creatorcontrib><creatorcontrib>Albright, Thomas D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gepshtein, Sergei</au><au>Pawar, Ambarish S</au><au>Kwon, Sunwoo</au><au>Savel'ev, Sergey</au><au>Albright, Thomas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially distributed computation in cortical circuits</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-04-22</date><risdate>2022</risdate><volume>8</volume><issue>16</issue><spage>eabl5865</spage><epage>eabl5865</epage><pages>eabl5865-eabl5865</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli. This view was challenged by evidence of contextual interactions between stimulus dimensions in which a neuron's response to one dimension strongly depends on other dimensions. Here, we use methods of mathematical modeling, psychophysics, and electrophysiology to address shortcomings of the traditional view. Using a model of a generic cortical circuit, we begin with the simple demonstration that cortical responses are always distributed among neurons, forming characteristic waveforms, which we call neural waves. When stimulated by patterned stimuli, circuit responses arise by interference of neural waves. Results of this process depend on interaction between stimulus dimensions. Comparison of modeled responses with responses of biological vision makes it clear that the framework of neural wave interference provides a useful alternative to the standard concept of neural computation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35452288</pmid><doi>10.1126/sciadv.abl5865</doi><orcidid>https://orcid.org/0000-0002-5761-6629</orcidid><orcidid>https://orcid.org/0000-0002-7756-0837</orcidid><orcidid>https://orcid.org/0000-0002-6328-7972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-04, Vol.8 (16), p.eabl5865-eabl5865 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032974 |
source | Science Online; PubMed Central |
subjects | Applied Physics Neuroscience SciAdv r-articles |
title | Spatially distributed computation in cortical circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20distributed%20computation%20in%20cortical%20circuits&rft.jtitle=Science%20advances&rft.au=Gepshtein,%20Sergei&rft.date=2022-04-22&rft.volume=8&rft.issue=16&rft.spage=eabl5865&rft.epage=eabl5865&rft.pages=eabl5865-eabl5865&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abl5865&rft_dat=%3Cproquest_pubme%3E2654282021%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-8e1e1b1229787caee9b7f3ab3055ba5af5dafbd5f9824b9d3e9e2871c4b627073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2654282021&rft_id=info:pmid/35452288&rfr_iscdi=true |