Loading…

Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials

In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L n ) 2 ](BF 4 ) 2 in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction a...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2021-06, Vol.11 (34), p.297-2982
Main Authors: Che Hassan, Hazirah, Mohd Said, Suhana, Nik Ibrahim, Nik Muhd Jazli, Megat Hasnan, Megat Muhammad Ikhsan, Mohd Noor, Ikhwan Syafiq, Zakaria, Rozalina, Mohd Salleh, Mohd Faiz, Md. Noor, Nur Linahafizza, Abdullah, Norbani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3
cites cdi_FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3
container_end_page 2982
container_issue 34
container_start_page 297
container_title RSC advances
container_volume 11
creator Che Hassan, Hazirah
Mohd Said, Suhana
Nik Ibrahim, Nik Muhd Jazli
Megat Hasnan, Megat Muhammad Ikhsan
Mohd Noor, Ikhwan Syafiq
Zakaria, Rozalina
Mohd Salleh, Mohd Faiz
Md. Noor, Nur Linahafizza
Abdullah, Norbani
description In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L n ) 2 ](BF 4 ) 2 in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L 16 ) 2 ](BF 4 ) 2 complex demonstrated a maximum Seebeck coefficient of 8.67 mV K −1 , achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K −1 during the HS-LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The molecular optimisation strategies exhibit ultrahigh Seebeck coefficient through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS).
doi_str_mv 10.1039/d1ra01387d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9034036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656744978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXphTvIEpctUsBfceILUrVtAalSJUrPluNMNi6JHWynEv-An11vtyyFuYzt9_FoXo-L4jXBHwhm8mNHgsaENXX3rDikmIuSYiGfP1kfFMcx3uIcoiJUkJfFAat4LRmvDovfN2MKuhzsZkDXAC2YH8h46HtrLLiEfI80SgOESY8ogos-5G3wS-azHvxsDfJzspONOlnvtjdGu9GuQyO4TRq2BxewOkFxtq40wcfo7yCg1fX66gRNOkGweoyvihd9TnD8mI-Km4vz7-sv5eXV56_r08vScNqksuU5oBNd21BMhKmzS8kENS2tuBakZa1pcM97RpjMckOAy15rqakGLDt2VHza1Z2XdoLObE3oUc3BTjr8Ul5b9a_i7KA2_k5JzDhmIhdYPRYI_ucCMals3cA4agd-iYqKStScy7rJ6Lv_0Fu_BJftqdwtx1LgmmXq_Y56eJsA_b4ZgtV2xuqMfDt9mPFZht8-bX-P_ploBt7sgBDNXv37Sdg9qKesxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544096073</pqid></control><display><type>article</type><title>Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials</title><source>PubMed Central (PMC)</source><creator>Che Hassan, Hazirah ; Mohd Said, Suhana ; Nik Ibrahim, Nik Muhd Jazli ; Megat Hasnan, Megat Muhammad Ikhsan ; Mohd Noor, Ikhwan Syafiq ; Zakaria, Rozalina ; Mohd Salleh, Mohd Faiz ; Md. Noor, Nur Linahafizza ; Abdullah, Norbani</creator><creatorcontrib>Che Hassan, Hazirah ; Mohd Said, Suhana ; Nik Ibrahim, Nik Muhd Jazli ; Megat Hasnan, Megat Muhammad Ikhsan ; Mohd Noor, Ikhwan Syafiq ; Zakaria, Rozalina ; Mohd Salleh, Mohd Faiz ; Md. Noor, Nur Linahafizza ; Abdullah, Norbani</creatorcontrib><description>In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L n ) 2 ](BF 4 ) 2 in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L 16 ) 2 ](BF 4 ) 2 complex demonstrated a maximum Seebeck coefficient of 8.67 mV K −1 , achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K −1 during the HS-LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The molecular optimisation strategies exhibit ultrahigh Seebeck coefficient through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS).</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra01387d</identifier><identifier>PMID: 35479345</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Coupling (molecular) ; Electrochemical cells ; Electron spin ; Energy harvesting ; Entropy ; Liquid crystals ; Optimization ; Seebeck effect ; Temperature gradients</subject><ispartof>RSC advances, 2021-06, Vol.11 (34), p.297-2982</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3</citedby><cites>FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35479345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Che Hassan, Hazirah</creatorcontrib><creatorcontrib>Mohd Said, Suhana</creatorcontrib><creatorcontrib>Nik Ibrahim, Nik Muhd Jazli</creatorcontrib><creatorcontrib>Megat Hasnan, Megat Muhammad Ikhsan</creatorcontrib><creatorcontrib>Mohd Noor, Ikhwan Syafiq</creatorcontrib><creatorcontrib>Zakaria, Rozalina</creatorcontrib><creatorcontrib>Mohd Salleh, Mohd Faiz</creatorcontrib><creatorcontrib>Md. Noor, Nur Linahafizza</creatorcontrib><creatorcontrib>Abdullah, Norbani</creatorcontrib><title>Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L n ) 2 ](BF 4 ) 2 in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L 16 ) 2 ](BF 4 ) 2 complex demonstrated a maximum Seebeck coefficient of 8.67 mV K −1 , achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K −1 during the HS-LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The molecular optimisation strategies exhibit ultrahigh Seebeck coefficient through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS).</description><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Electrochemical cells</subject><subject>Electron spin</subject><subject>Energy harvesting</subject><subject>Entropy</subject><subject>Liquid crystals</subject><subject>Optimization</subject><subject>Seebeck effect</subject><subject>Temperature gradients</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiMEolXphTvIEpctUsBfceILUrVtAalSJUrPluNMNi6JHWynEv-An11vtyyFuYzt9_FoXo-L4jXBHwhm8mNHgsaENXX3rDikmIuSYiGfP1kfFMcx3uIcoiJUkJfFAat4LRmvDovfN2MKuhzsZkDXAC2YH8h46HtrLLiEfI80SgOESY8ogos-5G3wS-azHvxsDfJzspONOlnvtjdGu9GuQyO4TRq2BxewOkFxtq40wcfo7yCg1fX66gRNOkGweoyvihd9TnD8mI-Km4vz7-sv5eXV56_r08vScNqksuU5oBNd21BMhKmzS8kENS2tuBakZa1pcM97RpjMckOAy15rqakGLDt2VHza1Z2XdoLObE3oUc3BTjr8Ul5b9a_i7KA2_k5JzDhmIhdYPRYI_ucCMals3cA4agd-iYqKStScy7rJ6Lv_0Fu_BJftqdwtx1LgmmXq_Y56eJsA_b4ZgtV2xuqMfDt9mPFZht8-bX-P_ploBt7sgBDNXv37Sdg9qKesxQ</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Che Hassan, Hazirah</creator><creator>Mohd Said, Suhana</creator><creator>Nik Ibrahim, Nik Muhd Jazli</creator><creator>Megat Hasnan, Megat Muhammad Ikhsan</creator><creator>Mohd Noor, Ikhwan Syafiq</creator><creator>Zakaria, Rozalina</creator><creator>Mohd Salleh, Mohd Faiz</creator><creator>Md. Noor, Nur Linahafizza</creator><creator>Abdullah, Norbani</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210614</creationdate><title>Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials</title><author>Che Hassan, Hazirah ; Mohd Said, Suhana ; Nik Ibrahim, Nik Muhd Jazli ; Megat Hasnan, Megat Muhammad Ikhsan ; Mohd Noor, Ikhwan Syafiq ; Zakaria, Rozalina ; Mohd Salleh, Mohd Faiz ; Md. Noor, Nur Linahafizza ; Abdullah, Norbani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Electrochemical cells</topic><topic>Electron spin</topic><topic>Energy harvesting</topic><topic>Entropy</topic><topic>Liquid crystals</topic><topic>Optimization</topic><topic>Seebeck effect</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che Hassan, Hazirah</creatorcontrib><creatorcontrib>Mohd Said, Suhana</creatorcontrib><creatorcontrib>Nik Ibrahim, Nik Muhd Jazli</creatorcontrib><creatorcontrib>Megat Hasnan, Megat Muhammad Ikhsan</creatorcontrib><creatorcontrib>Mohd Noor, Ikhwan Syafiq</creatorcontrib><creatorcontrib>Zakaria, Rozalina</creatorcontrib><creatorcontrib>Mohd Salleh, Mohd Faiz</creatorcontrib><creatorcontrib>Md. Noor, Nur Linahafizza</creatorcontrib><creatorcontrib>Abdullah, Norbani</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che Hassan, Hazirah</au><au>Mohd Said, Suhana</au><au>Nik Ibrahim, Nik Muhd Jazli</au><au>Megat Hasnan, Megat Muhammad Ikhsan</au><au>Mohd Noor, Ikhwan Syafiq</au><au>Zakaria, Rozalina</au><au>Mohd Salleh, Mohd Faiz</au><au>Md. Noor, Nur Linahafizza</au><au>Abdullah, Norbani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-06-14</date><risdate>2021</risdate><volume>11</volume><issue>34</issue><spage>297</spage><epage>2982</epage><pages>297-2982</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L n ) 2 ](BF 4 ) 2 in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L 16 ) 2 ](BF 4 ) 2 complex demonstrated a maximum Seebeck coefficient of 8.67 mV K −1 , achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K −1 during the HS-LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The molecular optimisation strategies exhibit ultrahigh Seebeck coefficient through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35479345</pmid><doi>10.1039/d1ra01387d</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-06, Vol.11 (34), p.297-2982
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9034036
source PubMed Central (PMC)
subjects Chemistry
Coupling (molecular)
Electrochemical cells
Electron spin
Energy harvesting
Entropy
Liquid crystals
Optimization
Seebeck effect
Temperature gradients
title Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe() spin-crossover (SCO) materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high%20Seebeck%20coefficient%20of%20a%20thermal%20sensor%20through%20entropic%20optimisation%20of%20ligand%20length%20of%20Fe()%20spin-crossover%20(SCO)%20materials&rft.jtitle=RSC%20advances&rft.au=Che%20Hassan,%20Hazirah&rft.date=2021-06-14&rft.volume=11&rft.issue=34&rft.spage=297&rft.epage=2982&rft.pages=297-2982&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra01387d&rft_dat=%3Cproquest_pubme%3E2656744978%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-b4444ed6db82016c70469362cb254a61b3bc80f4f31396c781e49faa9a2ae09d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544096073&rft_id=info:pmid/35479345&rfr_iscdi=true