Loading…

Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology

The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-micr...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Reviews on cancer 2021-04, Vol.1875 (2), p.188520-188520, Article 188520
Main Authors: Sobhani, Faranak, Robinson, Ruth, Hamidinekoo, Azam, Roxanis, Ioannis, Somaiah, Navita, Yuan, Yinyin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003
cites cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003
container_end_page 188520
container_issue 2
container_start_page 188520
container_title Biochimica et biophysica acta. Reviews on cancer
container_volume 1875
creator Sobhani, Faranak
Robinson, Ruth
Hamidinekoo, Azam
Roxanis, Ioannis
Somaiah, Navita
Yuan, Yinyin
description The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.
doi_str_mv 10.1016/j.bbcan.2021.188520
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304419X21000196</els_id><sourcerecordid>2488171341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</originalsourceid><addsrcrecordid>eNp9kU1LHDEYx4O06Nb6CQSZYy-zTSaTmaTQgojVguDFQ28hk5f1WWaSaZIR_PZmd1XaS0-B_F-eh-eH0DnBa4JJ93W7Hgat_LrBDVkTzlmDj9CK8F7UDevIB7TCFLd1S8TvE_QppS3GhFHaHaMTSouBYbZC6jJmcKBBjRX4bMcRNtZrWylvKgMbyEWYVX4MY9g8f6vu5znEvHjIYNPeBNM8glYZgk-VC7F8TIsPdfB6n_mMPjo1Jnv2-p6ih5_XD1e39d39za-ry7tat0zk2jRu6DG3AzHWMMucwS1mmtCOmp5gTJkYhOscM0wJx_u257oRlmLGOlHkU_TjUDsvw2SNtj5HNco5wqTiswwK5L-Kh0e5CU9S4K4RfFfw5bUghj-LTVlOkHQ5iPI2LEk2LeekJ7QlxUoPVh1DStG69zEEyx0buZV7NnLHRh7YlNTF3xu-Z95gFMP3g8GWMz2BjTJp2MEwEK3O0gT474AXft6jhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488171341</pqid></control><display><type>article</type><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><source>ScienceDirect Journals</source><creator>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</creator><creatorcontrib>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</creatorcontrib><description>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</description><identifier>ISSN: 0304-419X</identifier><identifier>ISSN: 1879-2561</identifier><identifier>EISSN: 1879-2561</identifier><identifier>DOI: 10.1016/j.bbcan.2021.188520</identifier><identifier>PMID: 33561505</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial Intelligence ; Artificial intelligence (AI) ; Big Data ; Biomarkers, Tumor - immunology ; Computational Biology - methods ; Deep learning (DL) ; Digital pathology (DP) ; Humans ; Immuno-oncology (IO) ; Neoplasms - immunology ; Prognosis ; Tumor Escape ; Tumor Microenvironment</subject><ispartof>Biochimica et biophysica acta. Reviews on cancer, 2021-04, Vol.1875 (2), p.188520-188520, Article 188520</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</citedby><cites>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33561505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobhani, Faranak</creatorcontrib><creatorcontrib>Robinson, Ruth</creatorcontrib><creatorcontrib>Hamidinekoo, Azam</creatorcontrib><creatorcontrib>Roxanis, Ioannis</creatorcontrib><creatorcontrib>Somaiah, Navita</creatorcontrib><creatorcontrib>Yuan, Yinyin</creatorcontrib><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><title>Biochimica et biophysica acta. Reviews on cancer</title><addtitle>Biochim Biophys Acta Rev Cancer</addtitle><description>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</description><subject>Artificial Intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Big Data</subject><subject>Biomarkers, Tumor - immunology</subject><subject>Computational Biology - methods</subject><subject>Deep learning (DL)</subject><subject>Digital pathology (DP)</subject><subject>Humans</subject><subject>Immuno-oncology (IO)</subject><subject>Neoplasms - immunology</subject><subject>Prognosis</subject><subject>Tumor Escape</subject><subject>Tumor Microenvironment</subject><issn>0304-419X</issn><issn>1879-2561</issn><issn>1879-2561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHDEYx4O06Nb6CQSZYy-zTSaTmaTQgojVguDFQ28hk5f1WWaSaZIR_PZmd1XaS0-B_F-eh-eH0DnBa4JJ93W7Hgat_LrBDVkTzlmDj9CK8F7UDevIB7TCFLd1S8TvE_QppS3GhFHaHaMTSouBYbZC6jJmcKBBjRX4bMcRNtZrWylvKgMbyEWYVX4MY9g8f6vu5znEvHjIYNPeBNM8glYZgk-VC7F8TIsPdfB6n_mMPjo1Jnv2-p6ih5_XD1e39d39za-ry7tat0zk2jRu6DG3AzHWMMucwS1mmtCOmp5gTJkYhOscM0wJx_u257oRlmLGOlHkU_TjUDsvw2SNtj5HNco5wqTiswwK5L-Kh0e5CU9S4K4RfFfw5bUghj-LTVlOkHQ5iPI2LEk2LeekJ7QlxUoPVh1DStG69zEEyx0buZV7NnLHRh7YlNTF3xu-Z95gFMP3g8GWMz2BjTJp2MEwEK3O0gT474AXft6jhQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sobhani, Faranak</creator><creator>Robinson, Ruth</creator><creator>Hamidinekoo, Azam</creator><creator>Roxanis, Ioannis</creator><creator>Somaiah, Navita</creator><creator>Yuan, Yinyin</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><author>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Big Data</topic><topic>Biomarkers, Tumor - immunology</topic><topic>Computational Biology - methods</topic><topic>Deep learning (DL)</topic><topic>Digital pathology (DP)</topic><topic>Humans</topic><topic>Immuno-oncology (IO)</topic><topic>Neoplasms - immunology</topic><topic>Prognosis</topic><topic>Tumor Escape</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobhani, Faranak</creatorcontrib><creatorcontrib>Robinson, Ruth</creatorcontrib><creatorcontrib>Hamidinekoo, Azam</creatorcontrib><creatorcontrib>Roxanis, Ioannis</creatorcontrib><creatorcontrib>Somaiah, Navita</creatorcontrib><creatorcontrib>Yuan, Yinyin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta. Reviews on cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhani, Faranak</au><au>Robinson, Ruth</au><au>Hamidinekoo, Azam</au><au>Roxanis, Ioannis</au><au>Somaiah, Navita</au><au>Yuan, Yinyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</atitle><jtitle>Biochimica et biophysica acta. Reviews on cancer</jtitle><addtitle>Biochim Biophys Acta Rev Cancer</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1875</volume><issue>2</issue><spage>188520</spage><epage>188520</epage><pages>188520-188520</pages><artnum>188520</artnum><issn>0304-419X</issn><issn>1879-2561</issn><eissn>1879-2561</eissn><abstract>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33561505</pmid><doi>10.1016/j.bbcan.2021.188520</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-419X
ispartof Biochimica et biophysica acta. Reviews on cancer, 2021-04, Vol.1875 (2), p.188520-188520, Article 188520
issn 0304-419X
1879-2561
1879-2561
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062980
source ScienceDirect Journals
subjects Artificial Intelligence
Artificial intelligence (AI)
Big Data
Biomarkers, Tumor - immunology
Computational Biology - methods
Deep learning (DL)
Digital pathology (DP)
Humans
Immuno-oncology (IO)
Neoplasms - immunology
Prognosis
Tumor Escape
Tumor Microenvironment
title Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20digital%20pathology:%20Opportunities%20and%20implications%20for%20immuno-oncology&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Reviews%20on%20cancer&rft.au=Sobhani,%20Faranak&rft.date=2021-04-01&rft.volume=1875&rft.issue=2&rft.spage=188520&rft.epage=188520&rft.pages=188520-188520&rft.artnum=188520&rft.issn=0304-419X&rft.eissn=1879-2561&rft_id=info:doi/10.1016/j.bbcan.2021.188520&rft_dat=%3Cproquest_pubme%3E2488171341%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488171341&rft_id=info:pmid/33561505&rfr_iscdi=true