Loading…
Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology
The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-micr...
Saved in:
Published in: | Biochimica et biophysica acta. Reviews on cancer 2021-04, Vol.1875 (2), p.188520-188520, Article 188520 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003 |
container_end_page | 188520 |
container_issue | 2 |
container_start_page | 188520 |
container_title | Biochimica et biophysica acta. Reviews on cancer |
container_volume | 1875 |
creator | Sobhani, Faranak Robinson, Ruth Hamidinekoo, Azam Roxanis, Ioannis Somaiah, Navita Yuan, Yinyin |
description | The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use. |
doi_str_mv | 10.1016/j.bbcan.2021.188520 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304419X21000196</els_id><sourcerecordid>2488171341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</originalsourceid><addsrcrecordid>eNp9kU1LHDEYx4O06Nb6CQSZYy-zTSaTmaTQgojVguDFQ28hk5f1WWaSaZIR_PZmd1XaS0-B_F-eh-eH0DnBa4JJ93W7Hgat_LrBDVkTzlmDj9CK8F7UDevIB7TCFLd1S8TvE_QppS3GhFHaHaMTSouBYbZC6jJmcKBBjRX4bMcRNtZrWylvKgMbyEWYVX4MY9g8f6vu5znEvHjIYNPeBNM8glYZgk-VC7F8TIsPdfB6n_mMPjo1Jnv2-p6ih5_XD1e39d39za-ry7tat0zk2jRu6DG3AzHWMMucwS1mmtCOmp5gTJkYhOscM0wJx_u257oRlmLGOlHkU_TjUDsvw2SNtj5HNco5wqTiswwK5L-Kh0e5CU9S4K4RfFfw5bUghj-LTVlOkHQ5iPI2LEk2LeekJ7QlxUoPVh1DStG69zEEyx0buZV7NnLHRh7YlNTF3xu-Z95gFMP3g8GWMz2BjTJp2MEwEK3O0gT474AXft6jhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488171341</pqid></control><display><type>article</type><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><source>ScienceDirect Journals</source><creator>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</creator><creatorcontrib>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</creatorcontrib><description>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</description><identifier>ISSN: 0304-419X</identifier><identifier>ISSN: 1879-2561</identifier><identifier>EISSN: 1879-2561</identifier><identifier>DOI: 10.1016/j.bbcan.2021.188520</identifier><identifier>PMID: 33561505</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial Intelligence ; Artificial intelligence (AI) ; Big Data ; Biomarkers, Tumor - immunology ; Computational Biology - methods ; Deep learning (DL) ; Digital pathology (DP) ; Humans ; Immuno-oncology (IO) ; Neoplasms - immunology ; Prognosis ; Tumor Escape ; Tumor Microenvironment</subject><ispartof>Biochimica et biophysica acta. Reviews on cancer, 2021-04, Vol.1875 (2), p.188520-188520, Article 188520</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</citedby><cites>FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33561505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobhani, Faranak</creatorcontrib><creatorcontrib>Robinson, Ruth</creatorcontrib><creatorcontrib>Hamidinekoo, Azam</creatorcontrib><creatorcontrib>Roxanis, Ioannis</creatorcontrib><creatorcontrib>Somaiah, Navita</creatorcontrib><creatorcontrib>Yuan, Yinyin</creatorcontrib><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><title>Biochimica et biophysica acta. Reviews on cancer</title><addtitle>Biochim Biophys Acta Rev Cancer</addtitle><description>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</description><subject>Artificial Intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Big Data</subject><subject>Biomarkers, Tumor - immunology</subject><subject>Computational Biology - methods</subject><subject>Deep learning (DL)</subject><subject>Digital pathology (DP)</subject><subject>Humans</subject><subject>Immuno-oncology (IO)</subject><subject>Neoplasms - immunology</subject><subject>Prognosis</subject><subject>Tumor Escape</subject><subject>Tumor Microenvironment</subject><issn>0304-419X</issn><issn>1879-2561</issn><issn>1879-2561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHDEYx4O06Nb6CQSZYy-zTSaTmaTQgojVguDFQ28hk5f1WWaSaZIR_PZmd1XaS0-B_F-eh-eH0DnBa4JJ93W7Hgat_LrBDVkTzlmDj9CK8F7UDevIB7TCFLd1S8TvE_QppS3GhFHaHaMTSouBYbZC6jJmcKBBjRX4bMcRNtZrWylvKgMbyEWYVX4MY9g8f6vu5znEvHjIYNPeBNM8glYZgk-VC7F8TIsPdfB6n_mMPjo1Jnv2-p6ih5_XD1e39d39za-ry7tat0zk2jRu6DG3AzHWMMucwS1mmtCOmp5gTJkYhOscM0wJx_u257oRlmLGOlHkU_TjUDsvw2SNtj5HNco5wqTiswwK5L-Kh0e5CU9S4K4RfFfw5bUghj-LTVlOkHQ5iPI2LEk2LeekJ7QlxUoPVh1DStG69zEEyx0buZV7NnLHRh7YlNTF3xu-Z95gFMP3g8GWMz2BjTJp2MEwEK3O0gT474AXft6jhQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sobhani, Faranak</creator><creator>Robinson, Ruth</creator><creator>Hamidinekoo, Azam</creator><creator>Roxanis, Ioannis</creator><creator>Somaiah, Navita</creator><creator>Yuan, Yinyin</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</title><author>Sobhani, Faranak ; Robinson, Ruth ; Hamidinekoo, Azam ; Roxanis, Ioannis ; Somaiah, Navita ; Yuan, Yinyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Big Data</topic><topic>Biomarkers, Tumor - immunology</topic><topic>Computational Biology - methods</topic><topic>Deep learning (DL)</topic><topic>Digital pathology (DP)</topic><topic>Humans</topic><topic>Immuno-oncology (IO)</topic><topic>Neoplasms - immunology</topic><topic>Prognosis</topic><topic>Tumor Escape</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobhani, Faranak</creatorcontrib><creatorcontrib>Robinson, Ruth</creatorcontrib><creatorcontrib>Hamidinekoo, Azam</creatorcontrib><creatorcontrib>Roxanis, Ioannis</creatorcontrib><creatorcontrib>Somaiah, Navita</creatorcontrib><creatorcontrib>Yuan, Yinyin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta. Reviews on cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhani, Faranak</au><au>Robinson, Ruth</au><au>Hamidinekoo, Azam</au><au>Roxanis, Ioannis</au><au>Somaiah, Navita</au><au>Yuan, Yinyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology</atitle><jtitle>Biochimica et biophysica acta. Reviews on cancer</jtitle><addtitle>Biochim Biophys Acta Rev Cancer</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1875</volume><issue>2</issue><spage>188520</spage><epage>188520</epage><pages>188520-188520</pages><artnum>188520</artnum><issn>0304-419X</issn><issn>1879-2561</issn><eissn>1879-2561</eissn><abstract>The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33561505</pmid><doi>10.1016/j.bbcan.2021.188520</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-419X |
ispartof | Biochimica et biophysica acta. Reviews on cancer, 2021-04, Vol.1875 (2), p.188520-188520, Article 188520 |
issn | 0304-419X 1879-2561 1879-2561 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9062980 |
source | ScienceDirect Journals |
subjects | Artificial Intelligence Artificial intelligence (AI) Big Data Biomarkers, Tumor - immunology Computational Biology - methods Deep learning (DL) Digital pathology (DP) Humans Immuno-oncology (IO) Neoplasms - immunology Prognosis Tumor Escape Tumor Microenvironment |
title | Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20digital%20pathology:%20Opportunities%20and%20implications%20for%20immuno-oncology&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Reviews%20on%20cancer&rft.au=Sobhani,%20Faranak&rft.date=2021-04-01&rft.volume=1875&rft.issue=2&rft.spage=188520&rft.epage=188520&rft.pages=188520-188520&rft.artnum=188520&rft.issn=0304-419X&rft.eissn=1879-2561&rft_id=info:doi/10.1016/j.bbcan.2021.188520&rft_dat=%3Cproquest_pubme%3E2488171341%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-d2fb708eb1ded5e5fd0405c1363d7100359b9f6f5d5a9f87478c29e305569003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488171341&rft_id=info:pmid/33561505&rfr_iscdi=true |