Loading…
Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the...
Saved in:
Published in: | The Journal of biological chemistry 2022-05, Vol.298 (5), p.101796-101796, Article 101796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3 |
container_end_page | 101796 |
container_issue | 5 |
container_start_page | 101796 |
container_title | The Journal of biological chemistry |
container_volume | 298 |
creator | Alagar Boopathy, Lokha R. Jacob-Tomas, Suleima Alecki, Célia Vera, Maria |
description | All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control. |
doi_str_mv | 10.1016/j.jbc.2022.101796 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9065632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822002368</els_id><sourcerecordid>2636890347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3</originalsourceid><addsrcrecordid>eNp9kUuPFCEURonROO3oD3BjaummWl5VQExMzMRXMsaNk7gjFFy6aKuhBXqi_146NU50Ixsg99wDuR9CzwneEkzGV_vtfrJbiik934UaH6ANwZL1bCDfHqINxpT0ig7yAj0pZY_b4oo8RhdsoFwOjG7QzWews4mhHEpXTVhSDnHX1Rk6-HnMUEpIsUu-m8HUrszJfu-OOVUIsfFpPadSTQmla6JlgbiD8hQ98mYp8Oxuv0Q37999vfrYX3_58Onq7XVvORe1n9ygMCih2OAZ9wwkCKGc4V4yB8MkOaYWGzG1khNMOsKJt2CFdI5P3rNL9Gb1Hk_TAZyFWLNZ9DGHg8m_dDJB_1uJYda7dKsVHoeR0SZ4eSfI6ccJStWHUCwsi4mQTkXTkY1SYcZFQ8mK2pxKyeDvnyFYn-PQe93i0Oc49BpH63nx9__uO_7MvwGvVwDalG4DZF1sgGjBhQy2apfCf_S_AXFSnlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636890347</pqid></control><display><type>article</type><title>Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges</title><source>PubMed (Medline)</source><source>ScienceDirect®</source><creator>Alagar Boopathy, Lokha R. ; Jacob-Tomas, Suleima ; Alecki, Célia ; Vera, Maria</creator><creatorcontrib>Alagar Boopathy, Lokha R. ; Jacob-Tomas, Suleima ; Alecki, Célia ; Vera, Maria</creatorcontrib><description>All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.101796</identifier><identifier>PMID: 35248532</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acclimation ; gene expression ; heat shock factor 1 ; heat shock proteins ; heat shock response ; Heat-Shock Proteins - metabolism ; Heat-Shock Response - physiology ; JBC Reviews ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; mRNA decay ; Proteostasis ; Signal Transduction ; stress-regulated translation</subject><ispartof>The Journal of biological chemistry, 2022-05, Vol.298 (5), p.101796-101796, Article 101796</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3</citedby><cites>FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3</cites><orcidid>0000-0002-7547-5006 ; 0000-0003-3203-5104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065632/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925822002368$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35248532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alagar Boopathy, Lokha R.</creatorcontrib><creatorcontrib>Jacob-Tomas, Suleima</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Vera, Maria</creatorcontrib><title>Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.</description><subject>acclimation</subject><subject>gene expression</subject><subject>heat shock factor 1</subject><subject>heat shock proteins</subject><subject>heat shock response</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response - physiology</subject><subject>JBC Reviews</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>mRNA decay</subject><subject>Proteostasis</subject><subject>Signal Transduction</subject><subject>stress-regulated translation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEURonROO3oD3BjaummWl5VQExMzMRXMsaNk7gjFFy6aKuhBXqi_146NU50Ixsg99wDuR9CzwneEkzGV_vtfrJbiik934UaH6ANwZL1bCDfHqINxpT0ig7yAj0pZY_b4oo8RhdsoFwOjG7QzWews4mhHEpXTVhSDnHX1Rk6-HnMUEpIsUu-m8HUrszJfu-OOVUIsfFpPadSTQmla6JlgbiD8hQ98mYp8Oxuv0Q37999vfrYX3_58Onq7XVvORe1n9ygMCih2OAZ9wwkCKGc4V4yB8MkOaYWGzG1khNMOsKJt2CFdI5P3rNL9Gb1Hk_TAZyFWLNZ9DGHg8m_dDJB_1uJYda7dKsVHoeR0SZ4eSfI6ccJStWHUCwsi4mQTkXTkY1SYcZFQ8mK2pxKyeDvnyFYn-PQe93i0Oc49BpH63nx9__uO_7MvwGvVwDalG4DZF1sgGjBhQy2apfCf_S_AXFSnlA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Alagar Boopathy, Lokha R.</creator><creator>Jacob-Tomas, Suleima</creator><creator>Alecki, Célia</creator><creator>Vera, Maria</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7547-5006</orcidid><orcidid>https://orcid.org/0000-0003-3203-5104</orcidid></search><sort><creationdate>20220501</creationdate><title>Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges</title><author>Alagar Boopathy, Lokha R. ; Jacob-Tomas, Suleima ; Alecki, Célia ; Vera, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acclimation</topic><topic>gene expression</topic><topic>heat shock factor 1</topic><topic>heat shock proteins</topic><topic>heat shock response</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response - physiology</topic><topic>JBC Reviews</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>mRNA decay</topic><topic>Proteostasis</topic><topic>Signal Transduction</topic><topic>stress-regulated translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alagar Boopathy, Lokha R.</creatorcontrib><creatorcontrib>Jacob-Tomas, Suleima</creatorcontrib><creatorcontrib>Alecki, Célia</creatorcontrib><creatorcontrib>Vera, Maria</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alagar Boopathy, Lokha R.</au><au>Jacob-Tomas, Suleima</au><au>Alecki, Célia</au><au>Vera, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>298</volume><issue>5</issue><spage>101796</spage><epage>101796</epage><pages>101796-101796</pages><artnum>101796</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35248532</pmid><doi>10.1016/j.jbc.2022.101796</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7547-5006</orcidid><orcidid>https://orcid.org/0000-0003-3203-5104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2022-05, Vol.298 (5), p.101796-101796, Article 101796 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9065632 |
source | PubMed (Medline); ScienceDirect® |
subjects | acclimation gene expression heat shock factor 1 heat shock proteins heat shock response Heat-Shock Proteins - metabolism Heat-Shock Response - physiology JBC Reviews Molecular Chaperones - genetics Molecular Chaperones - metabolism mRNA decay Proteostasis Signal Transduction stress-regulated translation |
title | Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20tailoring%20the%20expression%20of%20heat%20shock%20proteins%20to%20proteostasis%20challenges&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Alagar%20Boopathy,%20Lokha%20R.&rft.date=2022-05-01&rft.volume=298&rft.issue=5&rft.spage=101796&rft.epage=101796&rft.pages=101796-101796&rft.artnum=101796&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.101796&rft_dat=%3Cproquest_pubme%3E2636890347%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-bd590e97935f34f3e8e779da4f83de5b8402c0a7bf3ed738d141fcec78dd4bff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636890347&rft_id=info:pmid/35248532&rfr_iscdi=true |