Loading…

Single-Point Mutations in Qβ Virus-like Particles Change Binding to Cells

Virus-like particles (VLPs) constitute large, polyvalent platforms onto which a wide variety of functional units can be grafted. Their use in biological settings often depends on their specific binding to cells or receptors of interest; this can be compromised by excessive nonspecific association wi...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2021-08, Vol.22 (8), p.3332-3341
Main Authors: Martino, Marisa L, Crooke, Stephen N, Manchester, Marianne, Finn, M.G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Virus-like particles (VLPs) constitute large, polyvalent platforms onto which a wide variety of functional units can be grafted. Their use in biological settings often depends on their specific binding to cells or receptors of interest; this can be compromised by excessive nonspecific association with other cells. We found that lysine residues mediate such nonspecific interactions, presumably by virtue of protonation and interaction with anionic membrane lipid headgroups and/or complementary residues of cell surface proteins and polysaccharides. Chemical acylation of surface-exposed amines of the Qβ VLP led to a significant reduction in the association of particles with mammalian cells. Single-point mutations of particular lysine residues to either glutamine, glutamic acid, tryptophan, or phenylalanine were mostly well-tolerated and formed intact capsids, but the introduction of double and triple mutants was far less forgiving. Introduction of glutamic acid at position 13 (K13E) led to a dramatic increase in cellular binding, whereas removal of the lysine at position 46 (K46Q) led to an equally striking reduction. Several plasma membrane components were found to specifically interact with the Qβ capsid irrespective of surface charge. These results suggest that specific cellular interactions are engaged or obviated by such mutations and provide us with more “benign” particles to which can be added binding functionality for targeted delivery applications.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.1c00443