Loading…

Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering

Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2022-04, Vol.121 (8), p.1525-1540
Main Authors: Adams, Wilson R., Gautam, Rekha, Locke, Andrea, Masson, Laura E., Borrachero-Conejo, Ana I., Dollinger, Bryan R., Throckmorton, Graham A., Duvall, Craig, Jansen, E. Duco, Mahadevan-Jansen, Anita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513
cites cdi_FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513
container_end_page 1540
container_issue 8
container_start_page 1525
container_title Biophysical journal
container_volume 121
creator Adams, Wilson R.
Gautam, Rekha
Locke, Andrea
Masson, Laura E.
Borrachero-Conejo, Ana I.
Dollinger, Bryan R.
Throckmorton, Graham A.
Duvall, Craig
Jansen, E. Duco
Mahadevan-Jansen, Anita
description Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.
doi_str_mv 10.1016/j.bpj.2022.03.006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634952200193X</els_id><sourcerecordid>2638727839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYNY7LX6AXyRPPqya_7cbDYIghRbhUJBiq9hNpltc9nNXpNsoX56c7lt0RdhYGDmnJMhP0LecdZyxruPu3bY71rBhGiZbBnrXpANV1vRMNZ3L8mG1VEjt0adktc57xjjQjH-ipxKJXTHpdwQ_zPkFabwO8RbWu6QTmEfPPUPEebgMk3LhDTEWmOChJ5GXBNMNJcwrxOUsES65oP5aVI1P2CGSLODUjDV3RtyMsKU8e1jPyM3F19vzr81V9eX38-_XDVuq3hpPBjjDTdO9woF96MGJUfvu8EzZQBRoNZSDRKEBg6dEIPpzVZIxbtRcXlGPh9j9-swo3cYSz3V7lOYIT3YBYL9dxPDnb1d7q1hWigta8CHx4C0_FoxFzuH7HCaIOKyZis62Wuhe2mqlB-lLi05Jxyfn-HMHuDYna1w7AGOZdJWEtXz_u_7nh1PNKrg01GA9ZPuAyabXcDo0IeErli_hP_E_wFBfaKx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638727839</pqid></control><display><type>article</type><title>Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering</title><source>PubMed Central</source><creator>Adams, Wilson R. ; Gautam, Rekha ; Locke, Andrea ; Masson, Laura E. ; Borrachero-Conejo, Ana I. ; Dollinger, Bryan R. ; Throckmorton, Graham A. ; Duvall, Craig ; Jansen, E. Duco ; Mahadevan-Jansen, Anita</creator><creatorcontrib>Adams, Wilson R. ; Gautam, Rekha ; Locke, Andrea ; Masson, Laura E. ; Borrachero-Conejo, Ana I. ; Dollinger, Bryan R. ; Throckmorton, Graham A. ; Duvall, Craig ; Jansen, E. Duco ; Mahadevan-Jansen, Anita</creatorcontrib><description>Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.03.006</identifier><identifier>PMID: 35276133</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Lipid Bilayers ; Nonlinear Optical Microscopy ; Optical Imaging ; Spectrum Analysis, Raman - methods ; Vibration</subject><ispartof>Biophysical journal, 2022-04, Vol.121 (8), p.1525-1540</ispartof><rights>2022 Biophysical Society</rights><rights>Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 Biophysical Society. 2022 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513</citedby><cites>FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513</cites><orcidid>0000-0002-7357-9688 ; 0000-0002-1778-6180 ; 0000-0001-6605-4149 ; 0000-0002-1176-8491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072573/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072573/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35276133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, Wilson R.</creatorcontrib><creatorcontrib>Gautam, Rekha</creatorcontrib><creatorcontrib>Locke, Andrea</creatorcontrib><creatorcontrib>Masson, Laura E.</creatorcontrib><creatorcontrib>Borrachero-Conejo, Ana I.</creatorcontrib><creatorcontrib>Dollinger, Bryan R.</creatorcontrib><creatorcontrib>Throckmorton, Graham A.</creatorcontrib><creatorcontrib>Duvall, Craig</creatorcontrib><creatorcontrib>Jansen, E. Duco</creatorcontrib><creatorcontrib>Mahadevan-Jansen, Anita</creatorcontrib><title>Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.</description><subject>Lipid Bilayers</subject><subject>Nonlinear Optical Microscopy</subject><subject>Optical Imaging</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Vibration</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV9rFTEQxYNY7LX6AXyRPPqya_7cbDYIghRbhUJBiq9hNpltc9nNXpNsoX56c7lt0RdhYGDmnJMhP0LecdZyxruPu3bY71rBhGiZbBnrXpANV1vRMNZ3L8mG1VEjt0adktc57xjjQjH-ipxKJXTHpdwQ_zPkFabwO8RbWu6QTmEfPPUPEebgMk3LhDTEWmOChJ5GXBNMNJcwrxOUsES65oP5aVI1P2CGSLODUjDV3RtyMsKU8e1jPyM3F19vzr81V9eX38-_XDVuq3hpPBjjDTdO9woF96MGJUfvu8EzZQBRoNZSDRKEBg6dEIPpzVZIxbtRcXlGPh9j9-swo3cYSz3V7lOYIT3YBYL9dxPDnb1d7q1hWigta8CHx4C0_FoxFzuH7HCaIOKyZis62Wuhe2mqlB-lLi05Jxyfn-HMHuDYna1w7AGOZdJWEtXz_u_7nh1PNKrg01GA9ZPuAyabXcDo0IeErli_hP_E_wFBfaKx</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Adams, Wilson R.</creator><creator>Gautam, Rekha</creator><creator>Locke, Andrea</creator><creator>Masson, Laura E.</creator><creator>Borrachero-Conejo, Ana I.</creator><creator>Dollinger, Bryan R.</creator><creator>Throckmorton, Graham A.</creator><creator>Duvall, Craig</creator><creator>Jansen, E. Duco</creator><creator>Mahadevan-Jansen, Anita</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7357-9688</orcidid><orcidid>https://orcid.org/0000-0002-1778-6180</orcidid><orcidid>https://orcid.org/0000-0001-6605-4149</orcidid><orcidid>https://orcid.org/0000-0002-1176-8491</orcidid></search><sort><creationdate>20220419</creationdate><title>Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering</title><author>Adams, Wilson R. ; Gautam, Rekha ; Locke, Andrea ; Masson, Laura E. ; Borrachero-Conejo, Ana I. ; Dollinger, Bryan R. ; Throckmorton, Graham A. ; Duvall, Craig ; Jansen, E. Duco ; Mahadevan-Jansen, Anita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Lipid Bilayers</topic><topic>Nonlinear Optical Microscopy</topic><topic>Optical Imaging</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Wilson R.</creatorcontrib><creatorcontrib>Gautam, Rekha</creatorcontrib><creatorcontrib>Locke, Andrea</creatorcontrib><creatorcontrib>Masson, Laura E.</creatorcontrib><creatorcontrib>Borrachero-Conejo, Ana I.</creatorcontrib><creatorcontrib>Dollinger, Bryan R.</creatorcontrib><creatorcontrib>Throckmorton, Graham A.</creatorcontrib><creatorcontrib>Duvall, Craig</creatorcontrib><creatorcontrib>Jansen, E. Duco</creatorcontrib><creatorcontrib>Mahadevan-Jansen, Anita</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Wilson R.</au><au>Gautam, Rekha</au><au>Locke, Andrea</au><au>Masson, Laura E.</au><au>Borrachero-Conejo, Ana I.</au><au>Dollinger, Bryan R.</au><au>Throckmorton, Graham A.</au><au>Duvall, Craig</au><au>Jansen, E. Duco</au><au>Mahadevan-Jansen, Anita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>121</volume><issue>8</issue><spage>1525</spage><epage>1540</epage><pages>1525-1540</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35276133</pmid><doi>10.1016/j.bpj.2022.03.006</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7357-9688</orcidid><orcidid>https://orcid.org/0000-0002-1778-6180</orcidid><orcidid>https://orcid.org/0000-0001-6605-4149</orcidid><orcidid>https://orcid.org/0000-0002-1176-8491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2022-04, Vol.121 (8), p.1525-1540
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072573
source PubMed Central
subjects Lipid Bilayers
Nonlinear Optical Microscopy
Optical Imaging
Spectrum Analysis, Raman - methods
Vibration
title Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20the%20lipid%20dynamics%20role%20in%20infrared%20neural%20stimulation%20using%20stimulated%20Raman%20scattering&rft.jtitle=Biophysical%20journal&rft.au=Adams,%20Wilson%20R.&rft.date=2022-04-19&rft.volume=121&rft.issue=8&rft.spage=1525&rft.epage=1540&rft.pages=1525-1540&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.03.006&rft_dat=%3Cproquest_pubme%3E2638727839%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638727839&rft_id=info:pmid/35276133&rfr_iscdi=true