Loading…
Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties
Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials. Therefore, it is necessary to solubilize the RE ions in a spine...
Saved in:
Published in: | RSC advances 2018-01, Vol.8 (44), p.25258-25267 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 25267 |
container_issue | 44 |
container_start_page | 25258 |
container_title | RSC advances |
container_volume | 8 |
creator | Pawar, R A Patange, Sunil M Shitre, A R Gore, S K Jadhav, S S Shirsath, Sagar E |
description | Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials. Therefore, it is necessary to solubilize the RE ions in a spinel lattice to get the most benefit. In this context, this work describes the synthesis of Co–Zn ferrite nanoparticles and the Gd3+ doping effect on the tuning of their magnetic properties. The modified sol–gel synthesis approach offered a facile way to synthesize ferrite nanoparticles using water as the solvent. X-ray diffraction with Rietveld refinement confirmed that both pure Co–Zn ferrite and Gd3+ substituted Co–Zn ferrite maintained single-phase cubic spinel structures. Energy dispersive spectroscopy was used to determine the elemental compositions of the nanoparticles. Field and temperature dependent magnetic characteristics were measured by employing a vibration sample magnetometer in field cooled (FC)/zero field cooled (ZFC) modes. Magnetic interactions were also determined by Mössbauer spectroscopy. The saturation magnetization and coercivity of Co–Zn ferrite were improved with the Gd3+ substitution due to the Gd3+ (4f7)–Fe3+ (3d5) interactions. The increase in magnetization and coercivity makes these Gd3+ substituted materials applicable for use in magnetic recording media and permanent magnets. |
doi_str_mv | 10.1039/c8ra04282a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9082527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070124454</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-50176a3a3cae3890fcfe83b6bf9a9d4052aae406f87f5a424a01111e1287ef843</originalsourceid><addsrcrecordid>eNpdkM9qFTEUxkNBbGm76RME3Agympz8mZmNIBetQsGN3bgZzp05uZMyNxmTjHBX9R18Q5_EgN3Yb_Mtvh8_OIexGyneSqH6d2OXUGjoAM_YBQhtGxC2P2fXOT-IGmskWPmSnStjNEijL9jjLp1ywYWPMx19LunEMUw8-3BYqFlnzMTzKZSZss88On47qTc8b_tcfNkKTXwX__z6_T1wRyn5QjxgiCum4seFMncxcQozhrGiRzwEqgNfU1ypIpSv2AuHS6brp75k958-ftt9bu6-3n7ZfbhrVlBtaYyQrUWFakRSXS_c6KhTe7t3PfaTFgYQSQvrutYZ1KBRyBqS0LXkOq0u2ft_3nXbH2kaKZSEy7Amf8R0GiL64f8l-Hk4xJ9DLzow0FbB6ydBij82ymWo7xppWTBQ3PIA1oLRPQhR0VfP0Ie4pVDPG0C0QoLWRqu_oiqJBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070124454</pqid></control><display><type>article</type><title>Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties</title><source>PubMed Central (Open Access)</source><creator>Pawar, R A ; Patange, Sunil M ; Shitre, A R ; Gore, S K ; Jadhav, S S ; Shirsath, Sagar E</creator><creatorcontrib>Pawar, R A ; Patange, Sunil M ; Shitre, A R ; Gore, S K ; Jadhav, S S ; Shirsath, Sagar E</creatorcontrib><description>Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials. Therefore, it is necessary to solubilize the RE ions in a spinel lattice to get the most benefit. In this context, this work describes the synthesis of Co–Zn ferrite nanoparticles and the Gd3+ doping effect on the tuning of their magnetic properties. The modified sol–gel synthesis approach offered a facile way to synthesize ferrite nanoparticles using water as the solvent. X-ray diffraction with Rietveld refinement confirmed that both pure Co–Zn ferrite and Gd3+ substituted Co–Zn ferrite maintained single-phase cubic spinel structures. Energy dispersive spectroscopy was used to determine the elemental compositions of the nanoparticles. Field and temperature dependent magnetic characteristics were measured by employing a vibration sample magnetometer in field cooled (FC)/zero field cooled (ZFC) modes. Magnetic interactions were also determined by Mössbauer spectroscopy. The saturation magnetization and coercivity of Co–Zn ferrite were improved with the Gd3+ substitution due to the Gd3+ (4f7)–Fe3+ (3d5) interactions. The increase in magnetization and coercivity makes these Gd3+ substituted materials applicable for use in magnetic recording media and permanent magnets.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra04282a</identifier><identifier>PMID: 35542154</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical synthesis ; Chemistry ; Cobalt ; Coercivity ; Gadolinium ; Lattice vibration ; Magnetic properties ; Magnetic recording ; Magnetic saturation ; Magnetic storage ; Magnetism ; Magnetization ; Material properties ; Mossbauer spectroscopy ; Nanoparticles ; Organic chemistry ; Permanent magnets ; Rare earth elements ; Recording instruments ; Spinel ; Substitutes ; Temperature dependence ; Vibration measurement ; X-ray diffraction ; Zinc ; Zinc ferrites</subject><ispartof>RSC advances, 2018-01, Vol.8 (44), p.25258-25267</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Pawar, R A</creatorcontrib><creatorcontrib>Patange, Sunil M</creatorcontrib><creatorcontrib>Shitre, A R</creatorcontrib><creatorcontrib>Gore, S K</creatorcontrib><creatorcontrib>Jadhav, S S</creatorcontrib><creatorcontrib>Shirsath, Sagar E</creatorcontrib><title>Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties</title><title>RSC advances</title><description>Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials. Therefore, it is necessary to solubilize the RE ions in a spinel lattice to get the most benefit. In this context, this work describes the synthesis of Co–Zn ferrite nanoparticles and the Gd3+ doping effect on the tuning of their magnetic properties. The modified sol–gel synthesis approach offered a facile way to synthesize ferrite nanoparticles using water as the solvent. X-ray diffraction with Rietveld refinement confirmed that both pure Co–Zn ferrite and Gd3+ substituted Co–Zn ferrite maintained single-phase cubic spinel structures. Energy dispersive spectroscopy was used to determine the elemental compositions of the nanoparticles. Field and temperature dependent magnetic characteristics were measured by employing a vibration sample magnetometer in field cooled (FC)/zero field cooled (ZFC) modes. Magnetic interactions were also determined by Mössbauer spectroscopy. The saturation magnetization and coercivity of Co–Zn ferrite were improved with the Gd3+ substitution due to the Gd3+ (4f7)–Fe3+ (3d5) interactions. The increase in magnetization and coercivity makes these Gd3+ substituted materials applicable for use in magnetic recording media and permanent magnets.</description><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Gadolinium</subject><subject>Lattice vibration</subject><subject>Magnetic properties</subject><subject>Magnetic recording</subject><subject>Magnetic saturation</subject><subject>Magnetic storage</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Material properties</subject><subject>Mossbauer spectroscopy</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Permanent magnets</subject><subject>Rare earth elements</subject><subject>Recording instruments</subject><subject>Spinel</subject><subject>Substitutes</subject><subject>Temperature dependence</subject><subject>Vibration measurement</subject><subject>X-ray diffraction</subject><subject>Zinc</subject><subject>Zinc ferrites</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM9qFTEUxkNBbGm76RME3Agympz8mZmNIBetQsGN3bgZzp05uZMyNxmTjHBX9R18Q5_EgN3Yb_Mtvh8_OIexGyneSqH6d2OXUGjoAM_YBQhtGxC2P2fXOT-IGmskWPmSnStjNEijL9jjLp1ywYWPMx19LunEMUw8-3BYqFlnzMTzKZSZss88On47qTc8b_tcfNkKTXwX__z6_T1wRyn5QjxgiCum4seFMncxcQozhrGiRzwEqgNfU1ypIpSv2AuHS6brp75k958-ftt9bu6-3n7ZfbhrVlBtaYyQrUWFakRSXS_c6KhTe7t3PfaTFgYQSQvrutYZ1KBRyBqS0LXkOq0u2ft_3nXbH2kaKZSEy7Amf8R0GiL64f8l-Hk4xJ9DLzow0FbB6ydBij82ymWo7xppWTBQ3PIA1oLRPQhR0VfP0Ie4pVDPG0C0QoLWRqu_oiqJBg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pawar, R A</creator><creator>Patange, Sunil M</creator><creator>Shitre, A R</creator><creator>Gore, S K</creator><creator>Jadhav, S S</creator><creator>Shirsath, Sagar E</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties</title><author>Pawar, R A ; Patange, Sunil M ; Shitre, A R ; Gore, S K ; Jadhav, S S ; Shirsath, Sagar E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-50176a3a3cae3890fcfe83b6bf9a9d4052aae406f87f5a424a01111e1287ef843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Gadolinium</topic><topic>Lattice vibration</topic><topic>Magnetic properties</topic><topic>Magnetic recording</topic><topic>Magnetic saturation</topic><topic>Magnetic storage</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Material properties</topic><topic>Mossbauer spectroscopy</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Permanent magnets</topic><topic>Rare earth elements</topic><topic>Recording instruments</topic><topic>Spinel</topic><topic>Substitutes</topic><topic>Temperature dependence</topic><topic>Vibration measurement</topic><topic>X-ray diffraction</topic><topic>Zinc</topic><topic>Zinc ferrites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawar, R A</creatorcontrib><creatorcontrib>Patange, Sunil M</creatorcontrib><creatorcontrib>Shitre, A R</creatorcontrib><creatorcontrib>Gore, S K</creatorcontrib><creatorcontrib>Jadhav, S S</creatorcontrib><creatorcontrib>Shirsath, Sagar E</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawar, R A</au><au>Patange, Sunil M</au><au>Shitre, A R</au><au>Gore, S K</au><au>Jadhav, S S</au><au>Shirsath, Sagar E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties</atitle><jtitle>RSC advances</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><issue>44</issue><spage>25258</spage><epage>25267</epage><pages>25258-25267</pages><eissn>2046-2069</eissn><abstract>Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials. Therefore, it is necessary to solubilize the RE ions in a spinel lattice to get the most benefit. In this context, this work describes the synthesis of Co–Zn ferrite nanoparticles and the Gd3+ doping effect on the tuning of their magnetic properties. The modified sol–gel synthesis approach offered a facile way to synthesize ferrite nanoparticles using water as the solvent. X-ray diffraction with Rietveld refinement confirmed that both pure Co–Zn ferrite and Gd3+ substituted Co–Zn ferrite maintained single-phase cubic spinel structures. Energy dispersive spectroscopy was used to determine the elemental compositions of the nanoparticles. Field and temperature dependent magnetic characteristics were measured by employing a vibration sample magnetometer in field cooled (FC)/zero field cooled (ZFC) modes. Magnetic interactions were also determined by Mössbauer spectroscopy. The saturation magnetization and coercivity of Co–Zn ferrite were improved with the Gd3+ substitution due to the Gd3+ (4f7)–Fe3+ (3d5) interactions. The increase in magnetization and coercivity makes these Gd3+ substituted materials applicable for use in magnetic recording media and permanent magnets.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35542154</pmid><doi>10.1039/c8ra04282a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2018-01, Vol.8 (44), p.25258-25267 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9082527 |
source | PubMed Central (Open Access) |
subjects | Chemical synthesis Chemistry Cobalt Coercivity Gadolinium Lattice vibration Magnetic properties Magnetic recording Magnetic saturation Magnetic storage Magnetism Magnetization Material properties Mossbauer spectroscopy Nanoparticles Organic chemistry Permanent magnets Rare earth elements Recording instruments Spinel Substitutes Temperature dependence Vibration measurement X-ray diffraction Zinc Zinc ferrites |
title | Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20chemistry%20and%20single-phase%20synthesis%20of%20Gd3+%20substituted%20Co%E2%80%93Zn%20ferrite%20nanoparticles%20for%20enhanced%20magnetic%20properties&rft.jtitle=RSC%20advances&rft.au=Pawar,%20R%20A&rft.date=2018-01-01&rft.volume=8&rft.issue=44&rft.spage=25258&rft.epage=25267&rft.pages=25258-25267&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra04282a&rft_dat=%3Cproquest_pubme%3E2070124454%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p237t-50176a3a3cae3890fcfe83b6bf9a9d4052aae406f87f5a424a01111e1287ef843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2070124454&rft_id=info:pmid/35542154&rfr_iscdi=true |