Loading…
Genetic assimilation and the evolution of direction of genital asymmetry in anablepid fishes
Phylogenetic comparative studies suggest that the direction of deviation from bilateral symmetry (sidedness) might evolve through genetic assimilation; however, the changes in sidedness inheritance remain largely unknown. We investigated the evolution of genital asymmetry in fish of the family Anabl...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2022-05, Vol.289 (1974), p.20220266 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phylogenetic comparative studies suggest that the direction of deviation from bilateral symmetry (sidedness) might evolve through genetic assimilation; however, the changes in sidedness inheritance remain largely unknown. We investigated the evolution of genital asymmetry in fish of the family Anablepidae, in which males' intromittent organ (the gonopodium, a modified anal fin) bends asymmetrically to the left or the right. In most species, males show a 1 : 1 ratio of left-to-right-sided gonopodia. However, we found that in three species left-sided males are significantly more abundant than right-sided ones. We mapped sidedness onto a new molecular phylogeny, finding that this left-sided bias likely evolved independently three times. Our breeding experiment in a species with an excess of left-sided males showed that sires produced more left-sided offspring independently of their own sidedness. We propose that sidedness might be inherited as a threshold trait, with different thresholds across species. This resolves the apparent paradox that, while there is evidence for the evolution of sidedness, commonly there is a lack of support for its heritability and no response to artificial selection. Focusing on the heritability of the left : right ratio of offspring, rather than on individual sidedness, is key for understanding how the direction of asymmetry becomes genetically assimilated. |
---|---|
ISSN: | 0962-8452 1471-2954 1471-2954 |
DOI: | 10.1098/rspb.2022.0266 |