Loading…

Chondroitin sulfate E downregulates N-cadherin and suppresses myotube formation

Myogenesis, the formation of muscle fibers, is affected by certain glycoproteins, including chondroitin sulfate (CS), which are involved in various cellular processes. We aimed to investigate the mechanism underlying CS-E-induced suppression of myotube formation using the myoblast cell line C2C12. D...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Veterinary Medical Science 2022, Vol.84(4), pp.494-501
Main Authors: SATOH, Fumi, SUGIURA, Akihiro, TASHIRO, Jiro, HOSAKA, Yoshinao Z., WARITA, Katsuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Myogenesis, the formation of muscle fibers, is affected by certain glycoproteins, including chondroitin sulfate (CS), which are involved in various cellular processes. We aimed to investigate the mechanism underlying CS-E-induced suppression of myotube formation using the myoblast cell line C2C12. Differentiated cells treated with 0.1 mg/ml CS-E for nine days showed multinucleated and rounded myotubes with myosin heavy chain positivity. No difference was found between the CS-E-treated group with rounded myotubes and CS (−) controls with elongated myotubes in the levels of phospho-cofilin, a protein involved in the dynamics of actin cytoskeleton. Interestingly, N-cadherin, which is involved in the gene expression of myoblast fusion factors (myomaker and myomixer), was significantly downregulated at both the mRNA and protein levels following CS-E treatment. These results suggest that N-cadherin downregulation is one of the mechanisms underlying the CS-E-induced suppression of myotube formation.
ISSN:0916-7250
1347-7439
DOI:10.1292/jvms.21-0662