Loading…
Fructose-1,6-Bisphosphatase 2 Inhibits Oral Squamous Cell Carcinoma Tumorigenesis and Glucose Metabolism via Downregulation of c-Myc
Background. Fructose-1,6-bisphosphatase 2 (FBP2), known as a rate-limiting enzyme in gluconeogenesis, is a tumor suppressor downregulated in various cancers. However, the role of FBP2 in oral squamous cell carcinoma (OSCC) remains largely unclear. Methods. The level of FBP2 in OSCC tissues and match...
Saved in:
Published in: | Oxidative medicine and cellular longevity 2022, Vol.2022, p.6766787-19 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background. Fructose-1,6-bisphosphatase 2 (FBP2), known as a rate-limiting enzyme in gluconeogenesis, is a tumor suppressor downregulated in various cancers. However, the role of FBP2 in oral squamous cell carcinoma (OSCC) remains largely unclear. Methods. The level of FBP2 in OSCC tissues and matched adjacent normal tissues was determined by western blot and RT-qPCR assays. In addition, analysis of FBP2 function in OSCC cells was assessed using both gain-of-function and loss-of-function studies. Results. In this study, we found that the expression of FBP2 was remarkably downregulated in OSCC tissues and OSCC cells. Overexpression of FBP2 suppressed the viability, proliferation, migration, and glycolysis of OSCC cells, whereas FBP2 knockdown exhibited the opposite results. Moreover, downregulation of FBP2 promoted the growth and glycolysis of OSCC cells in nude mice in a xenograft model. Specifically, FBP2 colocalizes with the c-Myc transcription factor in the nucleus. Significantly, inhibitory effects of FBP2 overexpression on the viability, proliferation, migration, and glycolysis of OSCC cells were reversed by c-Myc overexpression. Conclusion. Collectively, FBP2 could suppress the proliferation, migration and glycolysis in OSCC cells through downregulation of c-Myc. Our study revealed a FBP2-c-Myc signaling axis that regulates OSCC glycolysis and may provide a potential intervention strategy for OSCC treatment. |
---|---|
ISSN: | 1942-0900 1942-0994 |
DOI: | 10.1155/2022/6766787 |