Loading…
Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net
Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance imp...
Saved in:
Published in: | Journal of magnetic resonance imaging 2022-06, Vol.55 (6), p.1666-1680 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653 |
---|---|
cites | cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653 |
container_end_page | 1680 |
container_issue | 6 |
container_start_page | 1666 |
container_title | Journal of magnetic resonance imaging |
container_volume | 55 |
creator | Fujiwara, Takashi Berhane, Haben Scott, Michael B. Englund, Erin K. Schäfer, Michal Fonseca, Brian Berthusen, Alexander Robinson, Joshua D. Rigsby, Cynthia K. Browne, Lorna P. Markl, Michael Barker, Alex J. |
description | Background
Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear.
Purpose
To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement.
Study Type
Retrospective.
Population
A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training).
Field Strength/Sequence
3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI.
Assessment
Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs.
Statistical Tests
Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value |
doi_str_mv | 10.1002/jmri.27995 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599072147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqVw4QGQJS4INcV24sS-VFpaFoq2ULEsV8tJJluvHLvYDlVvPALPwiPxJHh32xVw4GJ77G_-Gc9Mlj0l-IhgTF-tBq-PaC0Eu5ftE0ZpThmv7qczZkVOOK73skchrDDGQpTsYbZXlLWgvGD72c85LAewUUXtLHI9ipeAJs5HhZTt0MVoBmeVv0ETH8FrCOi1CtChBJenaGrcNTr_dIa03TheQKdV9LpFc4hR2yVahPU6HY1JEmN0g4rJ-3w0Uf_6_mOuIxzurC9gO-cPN4Hv7maqAYNOwQZAi2R_gPg4e9ArE-DJ7X6QLaZvPp-8y2cf356dTGZ5W5ac5VVBcK9I3desbXpGCa9ZXTHBFaGMdpzRpi46oXrWKNE2JZCiFQ1uAHeYFxUrDrLjre7V2AzQtalKXhl55fWQCiKd0vLvF6sv5dJ9k4LgiuO1wItbAe--jhCiHHRowRhlwY1BUiYErikp64Q-_wddudHb9D1Jq4qSgpeMJ-rllmq9C8FDv0uGYLkeBbkeBbkZhQQ_-zP9HXrX-wSQLXCtDdz8R0q-Ty3eiv4GVCHDzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662138458</pqid></control><display><type>article</type><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><source>Wiley</source><creator>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</creator><creatorcontrib>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</creatorcontrib><description>Background
Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear.
Purpose
To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement.
Study Type
Retrospective.
Population
A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training).
Field Strength/Sequence
3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI.
Assessment
Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs.
Statistical Tests
Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value <0.05 was considered statistically significant.
Results
No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance.
Data Conclusion
Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs.
Level of Evidence
3
Technical Efficacy
Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27995</identifier><identifier>PMID: 34792835</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aorta ; Aorta - diagnostic imaging ; Arteries ; Artificial neural networks ; Automation ; Blood flow ; Cardiovascular diseases ; Child ; congenital heart diseases ; Coronary artery disease ; Coronary vessels ; deep learning ; Female ; Field strength ; four‐dimensional flow ; Heart diseases ; Humans ; Image processing ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Neural networks ; Neural Networks, Computer ; Pediatrics ; Population studies ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Artery - diagnostic imaging ; Retrospective Studies ; Similarity ; Statistical analysis ; Statistical tests ; Subgroups ; Training</subject><ispartof>Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1666-1680</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><rights>2022 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</citedby><cites>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</cites><orcidid>0000-0002-2129-5501 ; 0000-0003-1224-2333 ; 0000-0002-0565-0075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34792835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Takashi</creatorcontrib><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael B.</creatorcontrib><creatorcontrib>Englund, Erin K.</creatorcontrib><creatorcontrib>Schäfer, Michal</creatorcontrib><creatorcontrib>Fonseca, Brian</creatorcontrib><creatorcontrib>Berthusen, Alexander</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Browne, Lorna P.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear.
Purpose
To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement.
Study Type
Retrospective.
Population
A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training).
Field Strength/Sequence
3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI.
Assessment
Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs.
Statistical Tests
Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value <0.05 was considered statistically significant.
Results
No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance.
Data Conclusion
Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs.
Level of Evidence
3
Technical Efficacy
Stage 2</description><subject>Aorta</subject><subject>Aorta - diagnostic imaging</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Blood flow</subject><subject>Cardiovascular diseases</subject><subject>Child</subject><subject>congenital heart diseases</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>deep learning</subject><subject>Female</subject><subject>Field strength</subject><subject>four‐dimensional flow</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pediatrics</subject><subject>Population studies</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - diagnostic imaging</subject><subject>Retrospective Studies</subject><subject>Similarity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Subgroups</subject><subject>Training</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhiMEoqVw4QGQJS4INcV24sS-VFpaFoq2ULEsV8tJJluvHLvYDlVvPALPwiPxJHh32xVw4GJ77G_-Gc9Mlj0l-IhgTF-tBq-PaC0Eu5ftE0ZpThmv7qczZkVOOK73skchrDDGQpTsYbZXlLWgvGD72c85LAewUUXtLHI9ipeAJs5HhZTt0MVoBmeVv0ETH8FrCOi1CtChBJenaGrcNTr_dIa03TheQKdV9LpFc4hR2yVahPU6HY1JEmN0g4rJ-3w0Uf_6_mOuIxzurC9gO-cPN4Hv7maqAYNOwQZAi2R_gPg4e9ArE-DJ7X6QLaZvPp-8y2cf356dTGZ5W5ac5VVBcK9I3desbXpGCa9ZXTHBFaGMdpzRpi46oXrWKNE2JZCiFQ1uAHeYFxUrDrLjre7V2AzQtalKXhl55fWQCiKd0vLvF6sv5dJ9k4LgiuO1wItbAe--jhCiHHRowRhlwY1BUiYErikp64Q-_wddudHb9D1Jq4qSgpeMJ-rllmq9C8FDv0uGYLkeBbkeBbkZhQQ_-zP9HXrX-wSQLXCtDdz8R0q-Ty3eiv4GVCHDzA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Fujiwara, Takashi</creator><creator>Berhane, Haben</creator><creator>Scott, Michael B.</creator><creator>Englund, Erin K.</creator><creator>Schäfer, Michal</creator><creator>Fonseca, Brian</creator><creator>Berthusen, Alexander</creator><creator>Robinson, Joshua D.</creator><creator>Rigsby, Cynthia K.</creator><creator>Browne, Lorna P.</creator><creator>Markl, Michael</creator><creator>Barker, Alex J.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2129-5501</orcidid><orcidid>https://orcid.org/0000-0003-1224-2333</orcidid><orcidid>https://orcid.org/0000-0002-0565-0075</orcidid></search><sort><creationdate>202206</creationdate><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><author>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aorta</topic><topic>Aorta - diagnostic imaging</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Blood flow</topic><topic>Cardiovascular diseases</topic><topic>Child</topic><topic>congenital heart diseases</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>deep learning</topic><topic>Female</topic><topic>Field strength</topic><topic>four‐dimensional flow</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pediatrics</topic><topic>Population studies</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - diagnostic imaging</topic><topic>Retrospective Studies</topic><topic>Similarity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Subgroups</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Takashi</creatorcontrib><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael B.</creatorcontrib><creatorcontrib>Englund, Erin K.</creatorcontrib><creatorcontrib>Schäfer, Michal</creatorcontrib><creatorcontrib>Fonseca, Brian</creatorcontrib><creatorcontrib>Berthusen, Alexander</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Browne, Lorna P.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Takashi</au><au>Berhane, Haben</au><au>Scott, Michael B.</au><au>Englund, Erin K.</au><au>Schäfer, Michal</au><au>Fonseca, Brian</au><au>Berthusen, Alexander</au><au>Robinson, Joshua D.</au><au>Rigsby, Cynthia K.</au><au>Browne, Lorna P.</au><au>Markl, Michael</au><au>Barker, Alex J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2022-06</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1666</spage><epage>1680</epage><pages>1666-1680</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear.
Purpose
To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement.
Study Type
Retrospective.
Population
A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training).
Field Strength/Sequence
3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI.
Assessment
Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs.
Statistical Tests
Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value <0.05 was considered statistically significant.
Results
No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance.
Data Conclusion
Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs.
Level of Evidence
3
Technical Efficacy
Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34792835</pmid><doi>10.1002/jmri.27995</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2129-5501</orcidid><orcidid>https://orcid.org/0000-0003-1224-2333</orcidid><orcidid>https://orcid.org/0000-0002-0565-0075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1666-1680 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106805 |
source | Wiley |
subjects | Aorta Aorta - diagnostic imaging Arteries Artificial neural networks Automation Blood flow Cardiovascular diseases Child congenital heart diseases Coronary artery disease Coronary vessels deep learning Female Field strength four‐dimensional flow Heart diseases Humans Image processing Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Neural networks Neural Networks, Computer Pediatrics Population studies Pulmonary arteries Pulmonary artery Pulmonary Artery - diagnostic imaging Retrospective Studies Similarity Statistical analysis Statistical tests Subgroups Training |
title | Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20the%20Aorta%20and%20Pulmonary%20Arteries%20Based%20on%204D%20Flow%20MRI%20in%20the%20Pediatric%20Setting%20Using%20Fully%20Automated%20Multi%E2%80%90Site,%20Multi%E2%80%90Vendor,%20and%20Multi%E2%80%90Label%20Dense%20U%E2%80%90Net&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Fujiwara,%20Takashi&rft.date=2022-06&rft.volume=55&rft.issue=6&rft.spage=1666&rft.epage=1680&rft.pages=1666-1680&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27995&rft_dat=%3Cproquest_pubme%3E2599072147%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662138458&rft_id=info:pmid/34792835&rfr_iscdi=true |