Loading…

Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net

Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance imp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2022-06, Vol.55 (6), p.1666-1680
Main Authors: Fujiwara, Takashi, Berhane, Haben, Scott, Michael B., Englund, Erin K., Schäfer, Michal, Fonseca, Brian, Berthusen, Alexander, Robinson, Joshua D., Rigsby, Cynthia K., Browne, Lorna P., Markl, Michael, Barker, Alex J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653
cites cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653
container_end_page 1680
container_issue 6
container_start_page 1666
container_title Journal of magnetic resonance imaging
container_volume 55
creator Fujiwara, Takashi
Berhane, Haben
Scott, Michael B.
Englund, Erin K.
Schäfer, Michal
Fonseca, Brian
Berthusen, Alexander
Robinson, Joshua D.
Rigsby, Cynthia K.
Browne, Lorna P.
Markl, Michael
Barker, Alex J.
description Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear. Purpose To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement. Study Type Retrospective. Population A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training). Field Strength/Sequence 3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI. Assessment Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs. Statistical Tests Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value
doi_str_mv 10.1002/jmri.27995
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599072147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqVw4QGQJS4INcV24sS-VFpaFoq2ULEsV8tJJluvHLvYDlVvPALPwiPxJHh32xVw4GJ77G_-Gc9Mlj0l-IhgTF-tBq-PaC0Eu5ftE0ZpThmv7qczZkVOOK73skchrDDGQpTsYbZXlLWgvGD72c85LAewUUXtLHI9ipeAJs5HhZTt0MVoBmeVv0ETH8FrCOi1CtChBJenaGrcNTr_dIa03TheQKdV9LpFc4hR2yVahPU6HY1JEmN0g4rJ-3w0Uf_6_mOuIxzurC9gO-cPN4Hv7maqAYNOwQZAi2R_gPg4e9ArE-DJ7X6QLaZvPp-8y2cf356dTGZ5W5ac5VVBcK9I3desbXpGCa9ZXTHBFaGMdpzRpi46oXrWKNE2JZCiFQ1uAHeYFxUrDrLjre7V2AzQtalKXhl55fWQCiKd0vLvF6sv5dJ9k4LgiuO1wItbAe--jhCiHHRowRhlwY1BUiYErikp64Q-_wddudHb9D1Jq4qSgpeMJ-rllmq9C8FDv0uGYLkeBbkeBbkZhQQ_-zP9HXrX-wSQLXCtDdz8R0q-Ty3eiv4GVCHDzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662138458</pqid></control><display><type>article</type><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><source>Wiley</source><creator>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</creator><creatorcontrib>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</creatorcontrib><description>Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear. Purpose To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement. Study Type Retrospective. Population A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training). Field Strength/Sequence 3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI. Assessment Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs. Statistical Tests Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value &lt;0.05 was considered statistically significant. Results No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance. Data Conclusion Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs. Level of Evidence 3 Technical Efficacy Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27995</identifier><identifier>PMID: 34792835</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aorta ; Aorta - diagnostic imaging ; Arteries ; Artificial neural networks ; Automation ; Blood flow ; Cardiovascular diseases ; Child ; congenital heart diseases ; Coronary artery disease ; Coronary vessels ; deep learning ; Female ; Field strength ; four‐dimensional flow ; Heart diseases ; Humans ; Image processing ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Neural networks ; Neural Networks, Computer ; Pediatrics ; Population studies ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Artery - diagnostic imaging ; Retrospective Studies ; Similarity ; Statistical analysis ; Statistical tests ; Subgroups ; Training</subject><ispartof>Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1666-1680</ispartof><rights>2021 International Society for Magnetic Resonance in Medicine.</rights><rights>2022 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</citedby><cites>FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</cites><orcidid>0000-0002-2129-5501 ; 0000-0003-1224-2333 ; 0000-0002-0565-0075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34792835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Takashi</creatorcontrib><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael B.</creatorcontrib><creatorcontrib>Englund, Erin K.</creatorcontrib><creatorcontrib>Schäfer, Michal</creatorcontrib><creatorcontrib>Fonseca, Brian</creatorcontrib><creatorcontrib>Berthusen, Alexander</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Browne, Lorna P.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear. Purpose To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement. Study Type Retrospective. Population A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training). Field Strength/Sequence 3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI. Assessment Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs. Statistical Tests Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value &lt;0.05 was considered statistically significant. Results No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance. Data Conclusion Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs. Level of Evidence 3 Technical Efficacy Stage 2</description><subject>Aorta</subject><subject>Aorta - diagnostic imaging</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Blood flow</subject><subject>Cardiovascular diseases</subject><subject>Child</subject><subject>congenital heart diseases</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>deep learning</subject><subject>Female</subject><subject>Field strength</subject><subject>four‐dimensional flow</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pediatrics</subject><subject>Population studies</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - diagnostic imaging</subject><subject>Retrospective Studies</subject><subject>Similarity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Subgroups</subject><subject>Training</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9ksFu1DAQhiMEoqVw4QGQJS4INcV24sS-VFpaFoq2ULEsV8tJJluvHLvYDlVvPALPwiPxJHh32xVw4GJ77G_-Gc9Mlj0l-IhgTF-tBq-PaC0Eu5ftE0ZpThmv7qczZkVOOK73skchrDDGQpTsYbZXlLWgvGD72c85LAewUUXtLHI9ipeAJs5HhZTt0MVoBmeVv0ETH8FrCOi1CtChBJenaGrcNTr_dIa03TheQKdV9LpFc4hR2yVahPU6HY1JEmN0g4rJ-3w0Uf_6_mOuIxzurC9gO-cPN4Hv7maqAYNOwQZAi2R_gPg4e9ArE-DJ7X6QLaZvPp-8y2cf356dTGZ5W5ac5VVBcK9I3desbXpGCa9ZXTHBFaGMdpzRpi46oXrWKNE2JZCiFQ1uAHeYFxUrDrLjre7V2AzQtalKXhl55fWQCiKd0vLvF6sv5dJ9k4LgiuO1wItbAe--jhCiHHRowRhlwY1BUiYErikp64Q-_wddudHb9D1Jq4qSgpeMJ-rllmq9C8FDv0uGYLkeBbkeBbkZhQQ_-zP9HXrX-wSQLXCtDdz8R0q-Ty3eiv4GVCHDzA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Fujiwara, Takashi</creator><creator>Berhane, Haben</creator><creator>Scott, Michael B.</creator><creator>Englund, Erin K.</creator><creator>Schäfer, Michal</creator><creator>Fonseca, Brian</creator><creator>Berthusen, Alexander</creator><creator>Robinson, Joshua D.</creator><creator>Rigsby, Cynthia K.</creator><creator>Browne, Lorna P.</creator><creator>Markl, Michael</creator><creator>Barker, Alex J.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2129-5501</orcidid><orcidid>https://orcid.org/0000-0003-1224-2333</orcidid><orcidid>https://orcid.org/0000-0002-0565-0075</orcidid></search><sort><creationdate>202206</creationdate><title>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</title><author>Fujiwara, Takashi ; Berhane, Haben ; Scott, Michael B. ; Englund, Erin K. ; Schäfer, Michal ; Fonseca, Brian ; Berthusen, Alexander ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Browne, Lorna P. ; Markl, Michael ; Barker, Alex J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aorta</topic><topic>Aorta - diagnostic imaging</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Blood flow</topic><topic>Cardiovascular diseases</topic><topic>Child</topic><topic>congenital heart diseases</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>deep learning</topic><topic>Female</topic><topic>Field strength</topic><topic>four‐dimensional flow</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pediatrics</topic><topic>Population studies</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - diagnostic imaging</topic><topic>Retrospective Studies</topic><topic>Similarity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Subgroups</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Takashi</creatorcontrib><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael B.</creatorcontrib><creatorcontrib>Englund, Erin K.</creatorcontrib><creatorcontrib>Schäfer, Michal</creatorcontrib><creatorcontrib>Fonseca, Brian</creatorcontrib><creatorcontrib>Berthusen, Alexander</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Browne, Lorna P.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Takashi</au><au>Berhane, Haben</au><au>Scott, Michael B.</au><au>Englund, Erin K.</au><au>Schäfer, Michal</au><au>Fonseca, Brian</au><au>Berthusen, Alexander</au><au>Robinson, Joshua D.</au><au>Rigsby, Cynthia K.</au><au>Browne, Lorna P.</au><au>Markl, Michael</au><au>Barker, Alex J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2022-06</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1666</spage><epage>1680</epage><pages>1666-1680</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Automated segmentation using convolutional neural networks (CNNs) have been developed using four‐dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi‐institution data is necessary. However, the performance impact of heterogeneous multi‐site and multi‐vendor data on CNNs is unclear. Purpose To investigate multi‐site CNN segmentation of 4D flow MRI for pediatric blood flow measurement. Study Type Retrospective. Population A total of 174 subjects across two sites (female: 46%; N = 38 healthy controls, N = 136 CHD patients). Participants from site 1 (N = 100), site 2 (N = 74), and both sites (N = 174) were divided into subgroups to conduct 10‐fold cross validation (10% for testing, 90% for training). Field Strength/Sequence 3 T/1.5 T; retrospectively gated gradient recalled echo‐based 4D flow MRI. Assessment Accuracy of the 3D CNN segmentations trained on data from single site (single‐site CNNs) and data across both sites (multi‐site CNN) were evaluated by geometrical similarity (Dice score, human segmentation as ground truth) and net flow quantification at the ascending aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, single‐site and multi‐site CNNs. Statistical Tests Kruskal–Wallis test, Wilcoxon rank‐sum test, and Bland–Altman analysis. A P‐value &lt;0.05 was considered statistically significant. Results No difference existed between single‐site and multi‐site CNNs for geometrical similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P = 0.55; site 2: 0.906 vs. 0.904, P = 0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P = 0.64; site 2: 0.870 vs. 0.869, P = 0.96). Qs site‐1 medians were 51.0–51.3 mL/cycle (P = 0.81) and site‐2 medians were 66.7–69.4 mL/cycle (P = 0.84). Qp site‐1 medians were 46.8–48.0 mL/cycle (P = 0.97) and site‐2 medians were 76.0–77.4 mL/cycle (P = 0.98). Qp/Qs site‐1 medians were 0.87–0.88 (P = 0.97) and site‐2 medians were 1.01–1.03 (P = 0.43). Bland–Altman analysis for flow quantification found equivalent performance. Data Conclusion Multi‐site CNN‐based segmentation and blood flow measurement are feasible for pediatric 4D flow MRI and maintain performance of single‐site CNNs. Level of Evidence 3 Technical Efficacy Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34792835</pmid><doi>10.1002/jmri.27995</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2129-5501</orcidid><orcidid>https://orcid.org/0000-0003-1224-2333</orcidid><orcidid>https://orcid.org/0000-0002-0565-0075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2022-06, Vol.55 (6), p.1666-1680
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106805
source Wiley
subjects Aorta
Aorta - diagnostic imaging
Arteries
Artificial neural networks
Automation
Blood flow
Cardiovascular diseases
Child
congenital heart diseases
Coronary artery disease
Coronary vessels
deep learning
Female
Field strength
four‐dimensional flow
Heart diseases
Humans
Image processing
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neural networks
Neural Networks, Computer
Pediatrics
Population studies
Pulmonary arteries
Pulmonary artery
Pulmonary Artery - diagnostic imaging
Retrospective Studies
Similarity
Statistical analysis
Statistical tests
Subgroups
Training
title Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi‐Site, Multi‐Vendor, and Multi‐Label Dense U‐Net
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20the%20Aorta%20and%20Pulmonary%20Arteries%20Based%20on%204D%20Flow%20MRI%20in%20the%20Pediatric%20Setting%20Using%20Fully%20Automated%20Multi%E2%80%90Site,%20Multi%E2%80%90Vendor,%20and%20Multi%E2%80%90Label%20Dense%20U%E2%80%90Net&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Fujiwara,%20Takashi&rft.date=2022-06&rft.volume=55&rft.issue=6&rft.spage=1666&rft.epage=1680&rft.pages=1666-1680&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27995&rft_dat=%3Cproquest_pubme%3E2599072147%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4485-6310fa17f75cbf52187576598a1252d852b73d9af5ba9cb4e13c9b0be0d083653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662138458&rft_id=info:pmid/34792835&rfr_iscdi=true