Loading…
Coupling Lipid Labeling and Click Chemistry Enables Isolation of Extracellular Vesicles for Noninvasive Detection of Oncogenic Gene Alterations (Adv. Sci. 14/2022)
Extracellular Vesicle In article number 2105853 by Renjun Pei, Shaohua Lu, Hsian‐Rong Tseng, Yazhen Zhu, and co‐workers, an efficient, convenient, and rapid extracellular vesicle (EV) enrichment platform called EV Click Beads is developed by combining lipid labelling and click chemistry‐based captur...
Saved in:
Published in: | Advanced science 2022-05, Vol.9 (14), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extracellular Vesicle
In article number 2105853 by Renjun Pei, Shaohua Lu, Hsian‐Rong Tseng, Yazhen Zhu, and co‐workers, an efficient, convenient, and rapid extracellular vesicle (EV) enrichment platform called EV Click Beads is developed by combining lipid labelling and click chemistry‐based capturing. EV Click Beads provides a non‐invasive diagnostic solution for detection of disease status and monitoring treatment response for cancer patients, including Ewing sarcoma, the second most common type of bone cancer in children. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202270091 |