Loading…
Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer
Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the eff...
Saved in:
Published in: | Drugs - Real World Outcomes 2022-06, Vol.9 (2), p.275-285 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3 |
container_end_page | 285 |
container_issue | 2 |
container_start_page | 275 |
container_title | Drugs - Real World Outcomes |
container_volume | 9 |
creator | Holleman, Marscha S. Huygens, Simone A. Al, Maiwenn J. Kuppen, Malou C. P. Westgeest, Hans M. van den Bergh, Alfonsus C. M. Bergman, Andries M. van den Eertwegh, Alfonsus J. M. Hendriks, Mathijs P. Lampe, Menuhin I. Mehra, Niven van Moorselaar, Reindert J. A. van Oort, Inge M. Somford, Diederik M. de Wit, Ronald van de Wouw, Agnes J. Gerritsen, Winald R. Groot, Carin A. Uyl-de |
description | Background
Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice.
Objective
Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis.
Methods
We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry.
Results
Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]).
Conclusions
Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model. |
doi_str_mv | 10.1007/s40801-022-00294-7 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704165292</galeid><sourcerecordid>A704165292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvxDEHpG1LAamIqmrF0XKSydbIa29tB8Qv4e8y2y0tRQj54I955h3P6K2q54weMErV6yxpR1lNOa8p5VrW6lG1y5nuaq267vHNWdeMNXKn2s_Z9VRKJWQn1dNqRzSCSd3y3ernIbiwJBfJhry2CUIhiz7OhRwm572zeD-xzs8J8huyCGRRCqzWhZRILjOQc7C-_hKTH8mxLZa4QCw5dhksBj_FETyZYiJntjiUzuS7K1fkyOaS8CWG-hyyy2VT5SxFPBTAaBggPaueTNZn2L_d96rLk3cXRx_q08_vPx4tTutBal5q3iipeC90rxox0b7jCqgSw8gsgBRKykmMDCcCrVLWSi1sD8OoGbOjUBrEXvV2q7ue-xWMA_4yWW_Wya1s-mGideZhJLgrs4zfDEpIpiUKvLoVSPF6hlzMyuUBvLcB4pwNbyXrWqGbFtGXf6Ff45wCtodU20jWaqHuqaX1YFyYItYdNqJmoShCDdccqYN_ULhGWLkhBpgcvj9I4NuEAQedE0x3PTJqNo4yW0cZdJS5cZTZ_OXFn9O5S_ntHwTEFsgYCktI9y39R_YXyYzWbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665416937</pqid></control><display><type>article</type><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Alma/SFX Local Collection</source><creator>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</creator><creatorcontrib>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</creatorcontrib><description>Background
Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice.
Objective
Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis.
Methods
We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry.
Results
Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]).
Conclusions
Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</description><identifier>ISSN: 2199-1154</identifier><identifier>EISSN: 2198-9788</identifier><identifier>DOI: 10.1007/s40801-022-00294-7</identifier><identifier>PMID: 35314962</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Androgens ; Cancer therapies ; Care and treatment ; Castration ; Clinical medicine ; Cost analysis ; Data mining ; Effectiveness ; Hemoglobin ; Internal Medicine ; Medical research ; Medicine ; Medicine & Public Health ; Metastasis ; Methods ; Narcotics ; Original ; Original Research Article ; Patients ; Pharmacology/Toxicology ; Pharmacotherapy ; Prognosis ; Prostate cancer ; Regression analysis ; Research methodology ; Simulation ; Simulation methods ; Statistical models ; Statistics ; Testosterone</subject><ispartof>Drugs - Real World Outcomes, 2022-06, Vol.9 (2), p.275-285</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</cites><orcidid>0000-0002-4290-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2665416937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2665416937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11688,25753,27924,27925,36060,37012,44363,44590,53791,53793,74895,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35314962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holleman, Marscha S.</creatorcontrib><creatorcontrib>Huygens, Simone A.</creatorcontrib><creatorcontrib>Al, Maiwenn J.</creatorcontrib><creatorcontrib>Kuppen, Malou C. P.</creatorcontrib><creatorcontrib>Westgeest, Hans M.</creatorcontrib><creatorcontrib>van den Bergh, Alfonsus C. M.</creatorcontrib><creatorcontrib>Bergman, Andries M.</creatorcontrib><creatorcontrib>van den Eertwegh, Alfonsus J. M.</creatorcontrib><creatorcontrib>Hendriks, Mathijs P.</creatorcontrib><creatorcontrib>Lampe, Menuhin I.</creatorcontrib><creatorcontrib>Mehra, Niven</creatorcontrib><creatorcontrib>van Moorselaar, Reindert J. A.</creatorcontrib><creatorcontrib>van Oort, Inge M.</creatorcontrib><creatorcontrib>Somford, Diederik M.</creatorcontrib><creatorcontrib>de Wit, Ronald</creatorcontrib><creatorcontrib>van de Wouw, Agnes J.</creatorcontrib><creatorcontrib>Gerritsen, Winald R.</creatorcontrib><creatorcontrib>Groot, Carin A. Uyl-de</creatorcontrib><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><title>Drugs - Real World Outcomes</title><addtitle>Drugs - Real World Outcomes</addtitle><addtitle>Drugs Real World Outcomes</addtitle><description>Background
Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice.
Objective
Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis.
Methods
We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry.
Results
Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]).
Conclusions
Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</description><subject>Androgens</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Castration</subject><subject>Clinical medicine</subject><subject>Cost analysis</subject><subject>Data mining</subject><subject>Effectiveness</subject><subject>Hemoglobin</subject><subject>Internal Medicine</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Narcotics</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Patients</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacotherapy</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Regression analysis</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Testosterone</subject><issn>2199-1154</issn><issn>2198-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvxDEHpG1LAamIqmrF0XKSydbIa29tB8Qv4e8y2y0tRQj54I955h3P6K2q54weMErV6yxpR1lNOa8p5VrW6lG1y5nuaq267vHNWdeMNXKn2s_Z9VRKJWQn1dNqRzSCSd3y3ernIbiwJBfJhry2CUIhiz7OhRwm572zeD-xzs8J8huyCGRRCqzWhZRILjOQc7C-_hKTH8mxLZa4QCw5dhksBj_FETyZYiJntjiUzuS7K1fkyOaS8CWG-hyyy2VT5SxFPBTAaBggPaueTNZn2L_d96rLk3cXRx_q08_vPx4tTutBal5q3iipeC90rxox0b7jCqgSw8gsgBRKykmMDCcCrVLWSi1sD8OoGbOjUBrEXvV2q7ue-xWMA_4yWW_Wya1s-mGideZhJLgrs4zfDEpIpiUKvLoVSPF6hlzMyuUBvLcB4pwNbyXrWqGbFtGXf6Ff45wCtodU20jWaqHuqaX1YFyYItYdNqJmoShCDdccqYN_ULhGWLkhBpgcvj9I4NuEAQedE0x3PTJqNo4yW0cZdJS5cZTZ_OXFn9O5S_ntHwTEFsgYCktI9y39R_YXyYzWbg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Holleman, Marscha S.</creator><creator>Huygens, Simone A.</creator><creator>Al, Maiwenn J.</creator><creator>Kuppen, Malou C. P.</creator><creator>Westgeest, Hans M.</creator><creator>van den Bergh, Alfonsus C. M.</creator><creator>Bergman, Andries M.</creator><creator>van den Eertwegh, Alfonsus J. M.</creator><creator>Hendriks, Mathijs P.</creator><creator>Lampe, Menuhin I.</creator><creator>Mehra, Niven</creator><creator>van Moorselaar, Reindert J. A.</creator><creator>van Oort, Inge M.</creator><creator>Somford, Diederik M.</creator><creator>de Wit, Ronald</creator><creator>van de Wouw, Agnes J.</creator><creator>Gerritsen, Winald R.</creator><creator>Groot, Carin A. Uyl-de</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4290-8469</orcidid></search><sort><creationdate>20220601</creationdate><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><author>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Androgens</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Castration</topic><topic>Clinical medicine</topic><topic>Cost analysis</topic><topic>Data mining</topic><topic>Effectiveness</topic><topic>Hemoglobin</topic><topic>Internal Medicine</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Narcotics</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Patients</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacotherapy</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Regression analysis</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Testosterone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holleman, Marscha S.</creatorcontrib><creatorcontrib>Huygens, Simone A.</creatorcontrib><creatorcontrib>Al, Maiwenn J.</creatorcontrib><creatorcontrib>Kuppen, Malou C. P.</creatorcontrib><creatorcontrib>Westgeest, Hans M.</creatorcontrib><creatorcontrib>van den Bergh, Alfonsus C. M.</creatorcontrib><creatorcontrib>Bergman, Andries M.</creatorcontrib><creatorcontrib>van den Eertwegh, Alfonsus J. M.</creatorcontrib><creatorcontrib>Hendriks, Mathijs P.</creatorcontrib><creatorcontrib>Lampe, Menuhin I.</creatorcontrib><creatorcontrib>Mehra, Niven</creatorcontrib><creatorcontrib>van Moorselaar, Reindert J. A.</creatorcontrib><creatorcontrib>van Oort, Inge M.</creatorcontrib><creatorcontrib>Somford, Diederik M.</creatorcontrib><creatorcontrib>de Wit, Ronald</creatorcontrib><creatorcontrib>van de Wouw, Agnes J.</creatorcontrib><creatorcontrib>Gerritsen, Winald R.</creatorcontrib><creatorcontrib>Groot, Carin A. Uyl-de</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drugs - Real World Outcomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holleman, Marscha S.</au><au>Huygens, Simone A.</au><au>Al, Maiwenn J.</au><au>Kuppen, Malou C. P.</au><au>Westgeest, Hans M.</au><au>van den Bergh, Alfonsus C. M.</au><au>Bergman, Andries M.</au><au>van den Eertwegh, Alfonsus J. M.</au><au>Hendriks, Mathijs P.</au><au>Lampe, Menuhin I.</au><au>Mehra, Niven</au><au>van Moorselaar, Reindert J. A.</au><au>van Oort, Inge M.</au><au>Somford, Diederik M.</au><au>de Wit, Ronald</au><au>van de Wouw, Agnes J.</au><au>Gerritsen, Winald R.</au><au>Groot, Carin A. Uyl-de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</atitle><jtitle>Drugs - Real World Outcomes</jtitle><stitle>Drugs - Real World Outcomes</stitle><addtitle>Drugs Real World Outcomes</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>2199-1154</issn><eissn>2198-9788</eissn><abstract>Background
Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice.
Objective
Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis.
Methods
We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry.
Results
Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]).
Conclusions
Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35314962</pmid><doi>10.1007/s40801-022-00294-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4290-8469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-1154 |
ispartof | Drugs - Real World Outcomes, 2022-06, Vol.9 (2), p.275-285 |
issn | 2199-1154 2198-9788 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114194 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM global; Springer Nature - SpringerLink Journals - Fully Open Access ; Alma/SFX Local Collection |
subjects | Androgens Cancer therapies Care and treatment Castration Clinical medicine Cost analysis Data mining Effectiveness Hemoglobin Internal Medicine Medical research Medicine Medicine & Public Health Metastasis Methods Narcotics Original Original Research Article Patients Pharmacology/Toxicology Pharmacotherapy Prognosis Prostate cancer Regression analysis Research methodology Simulation Simulation methods Statistical models Statistics Testosterone |
title | Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Being%20Transparent%20About%20Brilliant%20Failures:%20An%20Attempt%20to%20Use%20Real-World%20Data%20in%20a%20Disease%20Model%20for%20Patients%20with%20Castration-Resistant%20Prostate%20Cancer&rft.jtitle=Drugs%20-%20Real%20World%20Outcomes&rft.au=Holleman,%20Marscha%20S.&rft.date=2022-06-01&rft.volume=9&rft.issue=2&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=2199-1154&rft.eissn=2198-9788&rft_id=info:doi/10.1007/s40801-022-00294-7&rft_dat=%3Cgale_pubme%3EA704165292%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665416937&rft_id=info:pmid/35314962&rft_galeid=A704165292&rfr_iscdi=true |