Loading…

Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer

Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the eff...

Full description

Saved in:
Bibliographic Details
Published in:Drugs - Real World Outcomes 2022-06, Vol.9 (2), p.275-285
Main Authors: Holleman, Marscha S., Huygens, Simone A., Al, Maiwenn J., Kuppen, Malou C. P., Westgeest, Hans M., van den Bergh, Alfonsus C. M., Bergman, Andries M., van den Eertwegh, Alfonsus J. M., Hendriks, Mathijs P., Lampe, Menuhin I., Mehra, Niven, van Moorselaar, Reindert J. A., van Oort, Inge M., Somford, Diederik M., de Wit, Ronald, van de Wouw, Agnes J., Gerritsen, Winald R., Groot, Carin A. Uyl-de
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3
container_end_page 285
container_issue 2
container_start_page 275
container_title Drugs - Real World Outcomes
container_volume 9
creator Holleman, Marscha S.
Huygens, Simone A.
Al, Maiwenn J.
Kuppen, Malou C. P.
Westgeest, Hans M.
van den Bergh, Alfonsus C. M.
Bergman, Andries M.
van den Eertwegh, Alfonsus J. M.
Hendriks, Mathijs P.
Lampe, Menuhin I.
Mehra, Niven
van Moorselaar, Reindert J. A.
van Oort, Inge M.
Somford, Diederik M.
de Wit, Ronald
van de Wouw, Agnes J.
Gerritsen, Winald R.
Groot, Carin A. Uyl-de
description Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis. Methods We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry. Results Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]). Conclusions Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.
doi_str_mv 10.1007/s40801-022-00294-7
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704165292</galeid><sourcerecordid>A704165292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvxDEHpG1LAamIqmrF0XKSydbIa29tB8Qv4e8y2y0tRQj54I955h3P6K2q54weMErV6yxpR1lNOa8p5VrW6lG1y5nuaq267vHNWdeMNXKn2s_Z9VRKJWQn1dNqRzSCSd3y3ernIbiwJBfJhry2CUIhiz7OhRwm572zeD-xzs8J8huyCGRRCqzWhZRILjOQc7C-_hKTH8mxLZa4QCw5dhksBj_FETyZYiJntjiUzuS7K1fkyOaS8CWG-hyyy2VT5SxFPBTAaBggPaueTNZn2L_d96rLk3cXRx_q08_vPx4tTutBal5q3iipeC90rxox0b7jCqgSw8gsgBRKykmMDCcCrVLWSi1sD8OoGbOjUBrEXvV2q7ue-xWMA_4yWW_Wya1s-mGideZhJLgrs4zfDEpIpiUKvLoVSPF6hlzMyuUBvLcB4pwNbyXrWqGbFtGXf6Ff45wCtodU20jWaqHuqaX1YFyYItYdNqJmoShCDdccqYN_ULhGWLkhBpgcvj9I4NuEAQedE0x3PTJqNo4yW0cZdJS5cZTZ_OXFn9O5S_ntHwTEFsgYCktI9y39R_YXyYzWbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665416937</pqid></control><display><type>article</type><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Alma/SFX Local Collection</source><creator>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</creator><creatorcontrib>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</creatorcontrib><description>Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis. Methods We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry. Results Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]). Conclusions Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</description><identifier>ISSN: 2199-1154</identifier><identifier>EISSN: 2198-9788</identifier><identifier>DOI: 10.1007/s40801-022-00294-7</identifier><identifier>PMID: 35314962</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Androgens ; Cancer therapies ; Care and treatment ; Castration ; Clinical medicine ; Cost analysis ; Data mining ; Effectiveness ; Hemoglobin ; Internal Medicine ; Medical research ; Medicine ; Medicine &amp; Public Health ; Metastasis ; Methods ; Narcotics ; Original ; Original Research Article ; Patients ; Pharmacology/Toxicology ; Pharmacotherapy ; Prognosis ; Prostate cancer ; Regression analysis ; Research methodology ; Simulation ; Simulation methods ; Statistical models ; Statistics ; Testosterone</subject><ispartof>Drugs - Real World Outcomes, 2022-06, Vol.9 (2), p.275-285</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</cites><orcidid>0000-0002-4290-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2665416937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2665416937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11688,25753,27924,27925,36060,37012,44363,44590,53791,53793,74895,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35314962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holleman, Marscha S.</creatorcontrib><creatorcontrib>Huygens, Simone A.</creatorcontrib><creatorcontrib>Al, Maiwenn J.</creatorcontrib><creatorcontrib>Kuppen, Malou C. P.</creatorcontrib><creatorcontrib>Westgeest, Hans M.</creatorcontrib><creatorcontrib>van den Bergh, Alfonsus C. M.</creatorcontrib><creatorcontrib>Bergman, Andries M.</creatorcontrib><creatorcontrib>van den Eertwegh, Alfonsus J. M.</creatorcontrib><creatorcontrib>Hendriks, Mathijs P.</creatorcontrib><creatorcontrib>Lampe, Menuhin I.</creatorcontrib><creatorcontrib>Mehra, Niven</creatorcontrib><creatorcontrib>van Moorselaar, Reindert J. A.</creatorcontrib><creatorcontrib>van Oort, Inge M.</creatorcontrib><creatorcontrib>Somford, Diederik M.</creatorcontrib><creatorcontrib>de Wit, Ronald</creatorcontrib><creatorcontrib>van de Wouw, Agnes J.</creatorcontrib><creatorcontrib>Gerritsen, Winald R.</creatorcontrib><creatorcontrib>Groot, Carin A. Uyl-de</creatorcontrib><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><title>Drugs - Real World Outcomes</title><addtitle>Drugs - Real World Outcomes</addtitle><addtitle>Drugs Real World Outcomes</addtitle><description>Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis. Methods We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry. Results Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]). Conclusions Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</description><subject>Androgens</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Castration</subject><subject>Clinical medicine</subject><subject>Cost analysis</subject><subject>Data mining</subject><subject>Effectiveness</subject><subject>Hemoglobin</subject><subject>Internal Medicine</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Narcotics</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Patients</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacotherapy</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Regression analysis</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Testosterone</subject><issn>2199-1154</issn><issn>2198-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvxDEHpG1LAamIqmrF0XKSydbIa29tB8Qv4e8y2y0tRQj54I955h3P6K2q54weMErV6yxpR1lNOa8p5VrW6lG1y5nuaq267vHNWdeMNXKn2s_Z9VRKJWQn1dNqRzSCSd3y3ernIbiwJBfJhry2CUIhiz7OhRwm572zeD-xzs8J8huyCGRRCqzWhZRILjOQc7C-_hKTH8mxLZa4QCw5dhksBj_FETyZYiJntjiUzuS7K1fkyOaS8CWG-hyyy2VT5SxFPBTAaBggPaueTNZn2L_d96rLk3cXRx_q08_vPx4tTutBal5q3iipeC90rxox0b7jCqgSw8gsgBRKykmMDCcCrVLWSi1sD8OoGbOjUBrEXvV2q7ue-xWMA_4yWW_Wya1s-mGideZhJLgrs4zfDEpIpiUKvLoVSPF6hlzMyuUBvLcB4pwNbyXrWqGbFtGXf6Ff45wCtodU20jWaqHuqaX1YFyYItYdNqJmoShCDdccqYN_ULhGWLkhBpgcvj9I4NuEAQedE0x3PTJqNo4yW0cZdJS5cZTZ_OXFn9O5S_ntHwTEFsgYCktI9y39R_YXyYzWbg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Holleman, Marscha S.</creator><creator>Huygens, Simone A.</creator><creator>Al, Maiwenn J.</creator><creator>Kuppen, Malou C. P.</creator><creator>Westgeest, Hans M.</creator><creator>van den Bergh, Alfonsus C. M.</creator><creator>Bergman, Andries M.</creator><creator>van den Eertwegh, Alfonsus J. M.</creator><creator>Hendriks, Mathijs P.</creator><creator>Lampe, Menuhin I.</creator><creator>Mehra, Niven</creator><creator>van Moorselaar, Reindert J. A.</creator><creator>van Oort, Inge M.</creator><creator>Somford, Diederik M.</creator><creator>de Wit, Ronald</creator><creator>van de Wouw, Agnes J.</creator><creator>Gerritsen, Winald R.</creator><creator>Groot, Carin A. Uyl-de</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4290-8469</orcidid></search><sort><creationdate>20220601</creationdate><title>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</title><author>Holleman, Marscha S. ; Huygens, Simone A. ; Al, Maiwenn J. ; Kuppen, Malou C. P. ; Westgeest, Hans M. ; van den Bergh, Alfonsus C. M. ; Bergman, Andries M. ; van den Eertwegh, Alfonsus J. M. ; Hendriks, Mathijs P. ; Lampe, Menuhin I. ; Mehra, Niven ; van Moorselaar, Reindert J. A. ; van Oort, Inge M. ; Somford, Diederik M. ; de Wit, Ronald ; van de Wouw, Agnes J. ; Gerritsen, Winald R. ; Groot, Carin A. Uyl-de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Androgens</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Castration</topic><topic>Clinical medicine</topic><topic>Cost analysis</topic><topic>Data mining</topic><topic>Effectiveness</topic><topic>Hemoglobin</topic><topic>Internal Medicine</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Narcotics</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Patients</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacotherapy</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Regression analysis</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Testosterone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holleman, Marscha S.</creatorcontrib><creatorcontrib>Huygens, Simone A.</creatorcontrib><creatorcontrib>Al, Maiwenn J.</creatorcontrib><creatorcontrib>Kuppen, Malou C. P.</creatorcontrib><creatorcontrib>Westgeest, Hans M.</creatorcontrib><creatorcontrib>van den Bergh, Alfonsus C. M.</creatorcontrib><creatorcontrib>Bergman, Andries M.</creatorcontrib><creatorcontrib>van den Eertwegh, Alfonsus J. M.</creatorcontrib><creatorcontrib>Hendriks, Mathijs P.</creatorcontrib><creatorcontrib>Lampe, Menuhin I.</creatorcontrib><creatorcontrib>Mehra, Niven</creatorcontrib><creatorcontrib>van Moorselaar, Reindert J. A.</creatorcontrib><creatorcontrib>van Oort, Inge M.</creatorcontrib><creatorcontrib>Somford, Diederik M.</creatorcontrib><creatorcontrib>de Wit, Ronald</creatorcontrib><creatorcontrib>van de Wouw, Agnes J.</creatorcontrib><creatorcontrib>Gerritsen, Winald R.</creatorcontrib><creatorcontrib>Groot, Carin A. Uyl-de</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drugs - Real World Outcomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holleman, Marscha S.</au><au>Huygens, Simone A.</au><au>Al, Maiwenn J.</au><au>Kuppen, Malou C. P.</au><au>Westgeest, Hans M.</au><au>van den Bergh, Alfonsus C. M.</au><au>Bergman, Andries M.</au><au>van den Eertwegh, Alfonsus J. M.</au><au>Hendriks, Mathijs P.</au><au>Lampe, Menuhin I.</au><au>Mehra, Niven</au><au>van Moorselaar, Reindert J. A.</au><au>van Oort, Inge M.</au><au>Somford, Diederik M.</au><au>de Wit, Ronald</au><au>van de Wouw, Agnes J.</au><au>Gerritsen, Winald R.</au><au>Groot, Carin A. Uyl-de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer</atitle><jtitle>Drugs - Real World Outcomes</jtitle><stitle>Drugs - Real World Outcomes</stitle><addtitle>Drugs Real World Outcomes</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>2199-1154</issn><eissn>2198-9788</eissn><abstract>Background Real-world disease models spanning multiple treatment lines can provide insight into the (cost) effectiveness of treatment sequences in clinical practice. Objective Our objective was to explore whether a disease model based solely on real-world data (RWD) could be used to estimate the effectiveness of treatments for patients with castration-resistant prostate cancer (CRPC) that could then be suitably used in a cost-effectiveness analysis. Methods We developed a patient-level simulation model using patient-level data from the Dutch CAPRI registry as input parameters. Time to event (TTE) and overall survival (OS) were estimated with multivariate regression models, and type of event (i.e., next treatment or death) was estimated with multivariate logistic regression models. To test internal validity, TTE and OS from the simulation model were compared with the observed outcomes in the registry. Results Although patient characteristics and survival outcomes of the simulated data were comparable to those in the observed data (median OS 20.6 vs. 19.8 months, respectively), the disease model was less accurate in estimating differences between treatments (median OS simulated vs. observed population: 18.6 vs. 17.9 [abiraterone acetate plus prednisone], 24.0 vs. 25.0 [enzalutamide], 20.2 vs. 18.7 [docetaxel], and 20.0 vs. 23.8 months [radium-223]). Conclusions Overall, the disease model accurately approximated the observed data in the total CRPC population. However, the disease model was unable to predict differences in survival between treatments due to unobserved differences. Therefore, the model is not suitable for cost-effectiveness analysis of CRPC treatment. Using a combination of RWD and data from randomised controlled trials to estimate treatment effectiveness may improve the model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35314962</pmid><doi>10.1007/s40801-022-00294-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4290-8469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-1154
ispartof Drugs - Real World Outcomes, 2022-06, Vol.9 (2), p.275-285
issn 2199-1154
2198-9788
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114194
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM global; Springer Nature - SpringerLink Journals - Fully Open Access ; Alma/SFX Local Collection
subjects Androgens
Cancer therapies
Care and treatment
Castration
Clinical medicine
Cost analysis
Data mining
Effectiveness
Hemoglobin
Internal Medicine
Medical research
Medicine
Medicine & Public Health
Metastasis
Methods
Narcotics
Original
Original Research Article
Patients
Pharmacology/Toxicology
Pharmacotherapy
Prognosis
Prostate cancer
Regression analysis
Research methodology
Simulation
Simulation methods
Statistical models
Statistics
Testosterone
title Being Transparent About Brilliant Failures: An Attempt to Use Real-World Data in a Disease Model for Patients with Castration-Resistant Prostate Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Being%20Transparent%20About%20Brilliant%20Failures:%20An%20Attempt%20to%20Use%20Real-World%20Data%20in%20a%20Disease%20Model%20for%20Patients%20with%20Castration-Resistant%20Prostate%20Cancer&rft.jtitle=Drugs%20-%20Real%20World%20Outcomes&rft.au=Holleman,%20Marscha%20S.&rft.date=2022-06-01&rft.volume=9&rft.issue=2&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=2199-1154&rft.eissn=2198-9788&rft_id=info:doi/10.1007/s40801-022-00294-7&rft_dat=%3Cgale_pubme%3EA704165292%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-257472b39b753f0b827e073cd1aee43744f3d1978e677aa493abecd911ad379e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665416937&rft_id=info:pmid/35314962&rft_galeid=A704165292&rfr_iscdi=true