Loading…

Kinetic Analysis of the Effect of N‑Terminal Acetylation on Thymine DNA Glycosylase

Thymine DNA glycosylase (TDG) is tasked with initiating DNA base excision repair by recognizing and removing T, U, the chemotherapeutic 5-fluorouracil (5-FU), and many other oxidized and halogenated pyrimidine bases. TDG contains a long, unstructured N-terminus that contains four known sites of acet...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2022-05, Vol.61 (10), p.895-908
Main Authors: Tarantino, Mary E., Delaney, Sarah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thymine DNA glycosylase (TDG) is tasked with initiating DNA base excision repair by recognizing and removing T, U, the chemotherapeutic 5-fluorouracil (5-FU), and many other oxidized and halogenated pyrimidine bases. TDG contains a long, unstructured N-terminus that contains four known sites of acetylation: lysine (K) residues 59, 83, 84, and 87. Here, K to glutamine (Q) mutants are used as acetyl-lysine (AcK) analogues to probe the effect of N-terminal acetylation on the kinetics of TDG. We find that mimicking acetylation affects neither the maximal single-turnover rate k max nor the turnover rate k TO, indicating that the steps after initial binding, through chemistry and product release, are not affected. Under subsaturating conditions, however, acetylation changes the processing of U substrates. Subtle differences among AcK analogues are revealed with 5-FU in single-stranded DNA. We propose that the subtleties observed among the AcK analogues may be amplified on the genomic scale, leading to regulation of TDG activity. N-terminal acetylation, though, may also play a structural, rather than kinetic role in vivo.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.1c00823