Loading…

Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches

Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at cli...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmaceutics 2019-02, Vol.16 (2), p.898-906
Main Authors: Wang, Pan-Fen, Neiner, Alicia, Lane, Thomas R, Zorn, Kimberley M, Ekins, Sean, Kharasch, Evan D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3
cites cdi_FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3
container_end_page 906
container_issue 2
container_start_page 898
container_title Molecular pharmaceutics
container_volume 16
creator Wang, Pan-Fen
Neiner, Alicia
Lane, Thomas R
Zorn, Kimberley M
Ekins, Sean
Kharasch, Evan D
description Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at clinically relevant concentrations. Numerous CYP2B6 substrates contain halogens. CYP2B6 readily forms halogen-protein (particularly Cl-π) bonds, which influence substrate selectivity and active site orientation. Ketamine is chlorinated, but little is known about the metabolism of halogenated analogs. This investigation evaluated halogen substitution effects on CYP2B6-catalyzed ketamine analogs N-demethylation in vitro and modeled interactions with CYP2B6 using various computational approaches. Ortho phenyl ring halogen substituent changes caused substantial (18-fold) differences in K m, on the order of Br (bromoketamine, 10 μM) < Cl < F < H (deschloroketamine, 184 μM). In contrast, V max varied minimally (83–103 pmol/min/pmol CYP). Thus, apparent substrate binding affinity was the major consequence of halogen substitution and the major determinant of N-demethylation. Docking poses of ketamine and analogs were similar, sharing a π-stack with F297. Libdock scores were deschloroketamine < bromoketamine < ketamine < fluoroketamine. A Bayesian log K m model generated with Assay Central had a ROC of 0.86. The probability of activity at 15 μM for ketamine and analogs was predicted with this model. Deschloroketamine scores corresponded to the experimental K m, but the model was unable to predict activity with fluoroketamine. The binding pocket of CYP2B6 also suggested a hydrophobic component to substrate docking, on the basis of a strong linear correlation (R 2 = 0.92) between lipophilicity (AlogP) and metabolism (log K m) of ketamine and analogs. This property may be the simplest design criteria to use when considering similar compounds and CYP2B6 affinity.
doi_str_mv 10.1021/acs.molpharmaceut.8b01214
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9121441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161701949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3</originalsourceid><addsrcrecordid>eNqNkctuHCEQRVEUK34kvxCRXTYzgQbGTRaRnFH8kB0lUh5bVNC0B4uGNtCR5u9NayajeJcVJdW9h6q6CL2jZElJQz-Aycsh-nEDaQBjp7JsNaEN5S_QCRWcLVomm5eHuuXH6DTnB0IaLhr2Ch0zIlophDhBj9fg470N-Mekc3FlKi4GfBN6P9lgbMa3tsDggsVfa6Gjd3nAeovX2xLNJsXB4u9cENx8Xn2sNvzblRQxhA6v4zBOBWYeeHwxjimC2dj8Gh314LN9s3_P0K_LLz_X14u7b1c364u7BfCVLAshpdE96aAuDIQySYABZcC4sT3p25XW0opubnSMA5PnPXS6EyB03VgAO0Ofdtxx0oPtjA0lgVdjcgOkrYrg1PNOcBt1H_8oOV-S0wp4vwek-DjZXNTgsrHeQ7BxyqqhK3pOqOSySuVOalLMOdn-8A0lao5M1cjUs8jUPrLqffvvnAfn34yqQOwEM-MhTqneM_8H-AkmTq0y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161701949</pqid></control><display><type>article</type><title>Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Pan-Fen ; Neiner, Alicia ; Lane, Thomas R ; Zorn, Kimberley M ; Ekins, Sean ; Kharasch, Evan D</creator><creatorcontrib>Wang, Pan-Fen ; Neiner, Alicia ; Lane, Thomas R ; Zorn, Kimberley M ; Ekins, Sean ; Kharasch, Evan D</creatorcontrib><description><![CDATA[Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at clinically relevant concentrations. Numerous CYP2B6 substrates contain halogens. CYP2B6 readily forms halogen-protein (particularly Cl-π) bonds, which influence substrate selectivity and active site orientation. Ketamine is chlorinated, but little is known about the metabolism of halogenated analogs. This investigation evaluated halogen substitution effects on CYP2B6-catalyzed ketamine analogs N-demethylation in vitro and modeled interactions with CYP2B6 using various computational approaches. Ortho phenyl ring halogen substituent changes caused substantial (18-fold) differences in K m, on the order of Br (bromoketamine, 10 μM) < Cl < F < H (deschloroketamine, 184 μM). In contrast, V max varied minimally (83–103 pmol/min/pmol CYP). Thus, apparent substrate binding affinity was the major consequence of halogen substitution and the major determinant of N-demethylation. Docking poses of ketamine and analogs were similar, sharing a π-stack with F297. Libdock scores were deschloroketamine < bromoketamine < ketamine < fluoroketamine. A Bayesian log K m model generated with Assay Central had a ROC of 0.86. The probability of activity at 15 μM for ketamine and analogs was predicted with this model. Deschloroketamine scores corresponded to the experimental K m, but the model was unable to predict activity with fluoroketamine. The binding pocket of CYP2B6 also suggested a hydrophobic component to substrate docking, on the basis of a strong linear correlation (R 2 = 0.92) between lipophilicity (AlogP) and metabolism (log K m) of ketamine and analogs. This property may be the simplest design criteria to use when considering similar compounds and CYP2B6 affinity.]]></description><identifier>ISSN: 1543-8384</identifier><identifier>ISSN: 1543-8392</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.8b01214</identifier><identifier>PMID: 30589555</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bayes Theorem ; Computational Biology - methods ; Cytochrome P-450 CYP2B6 - metabolism ; Formaldehyde - chemistry ; Halogens - chemistry ; Ketamine - chemistry ; Ketamine - metabolism</subject><ispartof>Molecular pharmaceutics, 2019-02, Vol.16 (2), p.898-906</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3</citedby><cites>FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3</cites><orcidid>0000-0002-5691-5790 ; 0000-0002-6613-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30589555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Pan-Fen</creatorcontrib><creatorcontrib>Neiner, Alicia</creatorcontrib><creatorcontrib>Lane, Thomas R</creatorcontrib><creatorcontrib>Zorn, Kimberley M</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Kharasch, Evan D</creatorcontrib><title>Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description><![CDATA[Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at clinically relevant concentrations. Numerous CYP2B6 substrates contain halogens. CYP2B6 readily forms halogen-protein (particularly Cl-π) bonds, which influence substrate selectivity and active site orientation. Ketamine is chlorinated, but little is known about the metabolism of halogenated analogs. This investigation evaluated halogen substitution effects on CYP2B6-catalyzed ketamine analogs N-demethylation in vitro and modeled interactions with CYP2B6 using various computational approaches. Ortho phenyl ring halogen substituent changes caused substantial (18-fold) differences in K m, on the order of Br (bromoketamine, 10 μM) < Cl < F < H (deschloroketamine, 184 μM). In contrast, V max varied minimally (83–103 pmol/min/pmol CYP). Thus, apparent substrate binding affinity was the major consequence of halogen substitution and the major determinant of N-demethylation. Docking poses of ketamine and analogs were similar, sharing a π-stack with F297. Libdock scores were deschloroketamine < bromoketamine < ketamine < fluoroketamine. A Bayesian log K m model generated with Assay Central had a ROC of 0.86. The probability of activity at 15 μM for ketamine and analogs was predicted with this model. Deschloroketamine scores corresponded to the experimental K m, but the model was unable to predict activity with fluoroketamine. The binding pocket of CYP2B6 also suggested a hydrophobic component to substrate docking, on the basis of a strong linear correlation (R 2 = 0.92) between lipophilicity (AlogP) and metabolism (log K m) of ketamine and analogs. This property may be the simplest design criteria to use when considering similar compounds and CYP2B6 affinity.]]></description><subject>Bayes Theorem</subject><subject>Computational Biology - methods</subject><subject>Cytochrome P-450 CYP2B6 - metabolism</subject><subject>Formaldehyde - chemistry</subject><subject>Halogens - chemistry</subject><subject>Ketamine - chemistry</subject><subject>Ketamine - metabolism</subject><issn>1543-8384</issn><issn>1543-8392</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkctuHCEQRVEUK34kvxCRXTYzgQbGTRaRnFH8kB0lUh5bVNC0B4uGNtCR5u9NayajeJcVJdW9h6q6CL2jZElJQz-Aycsh-nEDaQBjp7JsNaEN5S_QCRWcLVomm5eHuuXH6DTnB0IaLhr2Ch0zIlophDhBj9fg470N-Mekc3FlKi4GfBN6P9lgbMa3tsDggsVfa6Gjd3nAeovX2xLNJsXB4u9cENx8Xn2sNvzblRQxhA6v4zBOBWYeeHwxjimC2dj8Gh314LN9s3_P0K_LLz_X14u7b1c364u7BfCVLAshpdE96aAuDIQySYABZcC4sT3p25XW0opubnSMA5PnPXS6EyB03VgAO0Ofdtxx0oPtjA0lgVdjcgOkrYrg1PNOcBt1H_8oOV-S0wp4vwek-DjZXNTgsrHeQ7BxyqqhK3pOqOSySuVOalLMOdn-8A0lao5M1cjUs8jUPrLqffvvnAfn34yqQOwEM-MhTqneM_8H-AkmTq0y</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Wang, Pan-Fen</creator><creator>Neiner, Alicia</creator><creator>Lane, Thomas R</creator><creator>Zorn, Kimberley M</creator><creator>Ekins, Sean</creator><creator>Kharasch, Evan D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><orcidid>https://orcid.org/0000-0002-6613-922X</orcidid></search><sort><creationdate>20190204</creationdate><title>Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches</title><author>Wang, Pan-Fen ; Neiner, Alicia ; Lane, Thomas R ; Zorn, Kimberley M ; Ekins, Sean ; Kharasch, Evan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Computational Biology - methods</topic><topic>Cytochrome P-450 CYP2B6 - metabolism</topic><topic>Formaldehyde - chemistry</topic><topic>Halogens - chemistry</topic><topic>Ketamine - chemistry</topic><topic>Ketamine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pan-Fen</creatorcontrib><creatorcontrib>Neiner, Alicia</creatorcontrib><creatorcontrib>Lane, Thomas R</creatorcontrib><creatorcontrib>Zorn, Kimberley M</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Kharasch, Evan D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pan-Fen</au><au>Neiner, Alicia</au><au>Lane, Thomas R</au><au>Zorn, Kimberley M</au><au>Ekins, Sean</au><au>Kharasch, Evan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2019-02-04</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>898</spage><epage>906</epage><pages>898-906</pages><issn>1543-8384</issn><issn>1543-8392</issn><eissn>1543-8392</eissn><abstract><![CDATA[Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at clinically relevant concentrations. Numerous CYP2B6 substrates contain halogens. CYP2B6 readily forms halogen-protein (particularly Cl-π) bonds, which influence substrate selectivity and active site orientation. Ketamine is chlorinated, but little is known about the metabolism of halogenated analogs. This investigation evaluated halogen substitution effects on CYP2B6-catalyzed ketamine analogs N-demethylation in vitro and modeled interactions with CYP2B6 using various computational approaches. Ortho phenyl ring halogen substituent changes caused substantial (18-fold) differences in K m, on the order of Br (bromoketamine, 10 μM) < Cl < F < H (deschloroketamine, 184 μM). In contrast, V max varied minimally (83–103 pmol/min/pmol CYP). Thus, apparent substrate binding affinity was the major consequence of halogen substitution and the major determinant of N-demethylation. Docking poses of ketamine and analogs were similar, sharing a π-stack with F297. Libdock scores were deschloroketamine < bromoketamine < ketamine < fluoroketamine. A Bayesian log K m model generated with Assay Central had a ROC of 0.86. The probability of activity at 15 μM for ketamine and analogs was predicted with this model. Deschloroketamine scores corresponded to the experimental K m, but the model was unable to predict activity with fluoroketamine. The binding pocket of CYP2B6 also suggested a hydrophobic component to substrate docking, on the basis of a strong linear correlation (R 2 = 0.92) between lipophilicity (AlogP) and metabolism (log K m) of ketamine and analogs. This property may be the simplest design criteria to use when considering similar compounds and CYP2B6 affinity.]]></abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30589555</pmid><doi>10.1021/acs.molpharmaceut.8b01214</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><orcidid>https://orcid.org/0000-0002-6613-922X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1543-8384
ispartof Molecular pharmaceutics, 2019-02, Vol.16 (2), p.898-906
issn 1543-8384
1543-8392
1543-8392
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9121441
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bayes Theorem
Computational Biology - methods
Cytochrome P-450 CYP2B6 - metabolism
Formaldehyde - chemistry
Halogens - chemistry
Ketamine - chemistry
Ketamine - metabolism
title Halogen Substitution Influences Ketamine Metabolism by Cytochrome P450 2B6: In Vitro and Computational Approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halogen%20Substitution%20Influences%20Ketamine%20Metabolism%20by%20Cytochrome%20P450%202B6:%20In%20Vitro%20and%20Computational%20Approaches&rft.jtitle=Molecular%20pharmaceutics&rft.au=Wang,%20Pan-Fen&rft.date=2019-02-04&rft.volume=16&rft.issue=2&rft.spage=898&rft.epage=906&rft.pages=898-906&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.8b01214&rft_dat=%3Cproquest_pubme%3E2161701949%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a469t-599cbf0da021a01390a3a13a34cef0f86bb9e5d1390d34a397fadbd5a5b8385a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161701949&rft_id=info:pmid/30589555&rfr_iscdi=true