Loading…
Synthesis, Tumor Specificity, and Photosensitizing Efficacy of Erlotinib-Conjugated Chlorins and Bacteriochlorins: Identification of a Highly Effective Candidate for Photodynamic Therapy of Cancer
Erlotinib was covalently linked to 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) and structurally related chlorins and bacteriochlorins at different positions of the tetrapyrrole ring. The functional consequence of each modification was determined by quantifying the uptake and subcell...
Saved in:
Published in: | Journal of medicinal chemistry 2021-01, Vol.64 (1), p.741-767 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Erlotinib was covalently linked to 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) and structurally related chlorins and bacteriochlorins at different positions of the tetrapyrrole ring. The functional consequence of each modification was determined by quantifying the uptake and subcellular deposition of the erlotinib conjugates, cellular response to therapeutic light treatment in tissue cultures, and in eliminating of corresponding tumors grown as a xenograft in SCID mice. The experimental human cancer models the established cell lines UMUC3 (bladder), FaDu (hypopharynx), and primary cultures of head and neck tumor cells. The effectiveness of the compounds was compared to that of HPPH. Furthermore, specific functional contribution of the carboxylic acid side group at position 17
and the chiral methyl group at 3(1') to the overall activity of the chimeric compounds was assessed. Among the conjugates investigated, the PS
was identified as the most effective candidate for achieving tumor cell-specific accumulation and yielding improved long-term tumor control. |
---|---|
ISSN: | 0022-2623 1520-4804 1520-4804 |
DOI: | 10.1021/acs.jmedchem.0c01735 |