Loading…
The Use of Disinfectant in Barn Cleaning Alters Microbial Composition and Increases Carriage of Campylobacter jejuni in Broiler Chickens
To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection [FD]) and may was...
Saved in:
Published in: | Applied and environmental microbiology 2022-05, Vol.88 (10), p.e0029522-e0029522 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection [FD]) and may wash with water (water wash [WW]) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the present study, a crossover experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning methods on commercial broiler performance, cecal microbiota composition, Campylobacter and Salmonella occurrence, and Campylobacter jejuni and Clostridium perfringens abundance, as well as on short-chain fatty acid (SCFA) concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis
0.05, and unweighted-UniFrac; adonis
0.01), with notable reductions in C. jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate, and total SCFA concentrations, which were negatively correlated with C. jejuni abundance. Our results suggest that WW may result in enhanced activity of the gut microbiota and reduced zoonotic transmission of C. jejuni in broiler production relative to FD in the absence of a disease challenge.
We compared the effects of barn FD and WW methods on gut microbial community structures and pathogen prevalence of broiler chickens in a nonchallenging commercial production setting. The results revealed that barn cleaning methods had little impact on the 30-day body weight and mortality rate of broiler chickens. In addition, the FD treatment had a subtle but significant effect on the broiler cecal microbiota with increased abundances of Campylobacter and decreased SCFA concentrations, which would support the adoption of WW as a standard practice. Thus, compared to FD, WW can be beneficial to broiler chicken production by inhibiting zoonotic pathogen colonization in the chicken gut with reduced cost and labor of cleaning. |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/aem.00295-22 |