Loading…

High-performance ferroelectric nonvolatile memory based on Gd-and Ni-codoped BiFeO3 films

BiFeO3 (BFO), Bi0.92Gd0.08FeO3 (BGFO) and Bi0.92Gd0.08Fe0.95Ni0.05O3 (BGFNO) films are epitaxially grown on 0.7 wt% Nb-SrTiO3 (NSTO) substrates. The strong ferroelectric property in BGFNO film is confirmed by piezoresponse force microscopy (PFM) and polarization versus voltage (P–V) measurement. It...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-05, Vol.12 (25), p.15814-15821
Main Authors: Song, Yanling, Wu, Qiyuan, Jia, Caihong, Gao, Zhaomeng, Zhang, Weifeng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BiFeO3 (BFO), Bi0.92Gd0.08FeO3 (BGFO) and Bi0.92Gd0.08Fe0.95Ni0.05O3 (BGFNO) films are epitaxially grown on 0.7 wt% Nb-SrTiO3 (NSTO) substrates. The strong ferroelectric property in BGFNO film is confirmed by piezoresponse force microscopy (PFM) and polarization versus voltage (P–V) measurement. It is also found that the Au/BGFNO/NSTO devices possess a ferroelectric resistance switching (RS) effect. Gd- and Ni-codoped BiFeO3 is found to strongly enhance the resistance on/off ratio. A resistance on/off ratio as large as 3 × 106 is achieved with an applied pulse voltage of −8 V and +4 V. In addition, the devices exhibit excellent retention and anti-fatigue characteristics. The memristor behavior of Au/BGFNO/NSTO is attributed to the switching of polarization states, which modulate the width and height of the barrier at the BGFNO/NSTO interface. The excellent resistive switching properties in Au/BGFNO/NSTO devices indicate the promising application in nonvolatile memory.
ISSN:2046-2069
DOI:10.1039/d2ra01156e