Loading…
High-performance ferroelectric nonvolatile memory based on Gd-and Ni-codoped BiFeO3 films
BiFeO3 (BFO), Bi0.92Gd0.08FeO3 (BGFO) and Bi0.92Gd0.08Fe0.95Ni0.05O3 (BGFNO) films are epitaxially grown on 0.7 wt% Nb-SrTiO3 (NSTO) substrates. The strong ferroelectric property in BGFNO film is confirmed by piezoresponse force microscopy (PFM) and polarization versus voltage (P–V) measurement. It...
Saved in:
Published in: | RSC advances 2022-05, Vol.12 (25), p.15814-15821 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BiFeO3 (BFO), Bi0.92Gd0.08FeO3 (BGFO) and Bi0.92Gd0.08Fe0.95Ni0.05O3 (BGFNO) films are epitaxially grown on 0.7 wt% Nb-SrTiO3 (NSTO) substrates. The strong ferroelectric property in BGFNO film is confirmed by piezoresponse force microscopy (PFM) and polarization versus voltage (P–V) measurement. It is also found that the Au/BGFNO/NSTO devices possess a ferroelectric resistance switching (RS) effect. Gd- and Ni-codoped BiFeO3 is found to strongly enhance the resistance on/off ratio. A resistance on/off ratio as large as 3 × 106 is achieved with an applied pulse voltage of −8 V and +4 V. In addition, the devices exhibit excellent retention and anti-fatigue characteristics. The memristor behavior of Au/BGFNO/NSTO is attributed to the switching of polarization states, which modulate the width and height of the barrier at the BGFNO/NSTO interface. The excellent resistive switching properties in Au/BGFNO/NSTO devices indicate the promising application in nonvolatile memory. |
---|---|
ISSN: | 2046-2069 |
DOI: | 10.1039/d2ra01156e |