Loading…
Assessing intervention effects in a randomized trial within a social network
Studies of social networks provide unique opportunities to assess the causal effects of interventions that may impact more of the population than just those intervened on directly. Such effects are sometimes called peer or spillover effects, and may exist in the presence of interference, that is, wh...
Saved in:
Published in: | Biometrics 2023-06, Vol.79 (2), p.1409-1419 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Studies of social networks provide unique opportunities to assess the causal effects of interventions that may impact more of the population than just those intervened on directly. Such effects are sometimes called peer or spillover effects, and may exist in the presence of interference, that is, when one individual's treatment affects another individual's outcome. Randomization‐based inference (RI) methods provide a theoretical basis for causal inference in randomized studies, even in the presence of interference. In this article, we consider RI of the intervention effect in the eX‐FLU trial, a randomized study designed to assess the effect of a social distancing intervention on influenza‐like‐illness transmission in a connected network of college students. The approach considered enables inference about the effect of the social distancing intervention on the per‐contact probability of influenza‐like‐illness transmission in the observed network. The methods allow for interference between connected individuals and for heterogeneous treatment effects. The proposed methods are evaluated empirically via simulation studies, and then applied to data from the eX‐FLU trial. |
---|---|
ISSN: | 0006-341X 1541-0420 1541-0420 |
DOI: | 10.1111/biom.13606 |