Loading…

Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?

There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the safety and efficacy of health services and the efficiency of health systems. To realize this potential, however, AI systems will have to overcome structural problems in the culture and prac...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports. Medicine 2022-05, Vol.3 (5), p.100622, Article 100622
Main Author: London, Alex John
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page 100622
container_title Cell reports. Medicine
container_volume 3
creator London, Alex John
description There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the safety and efficacy of health services and the efficiency of health systems. To realize this potential, however, AI systems will have to overcome structural problems in the culture and practice of medicine and the organization of health systems that impact the data from which AI models are built, the environments into which they will be deployed, and the practices and incentives that structure their development. This perspective elaborates on some of these structural challenges and provides recommendations to address potential shortcomings. [Display omitted] Alex John London argues that AI is unlikely to promote the learning necessary to ensure that therapeutic intent translates into beneficial patient outcomes until it overcomes structural challenges in medicine’s knowledge ecosystem. He identifies these challenges and provides recommendations to improve AI’s ability to bridge important healthcare knowledge gaps.
doi_str_mv 10.1016/j.xcrm.2022.100622
format article
fullrecord <record><control><sourceid>pubmed_elsev</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9133460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666379122001392</els_id><sourcerecordid>35584620</sourcerecordid><originalsourceid>FETCH-LOGICAL-e286t-59079682dea232e276b083b8cb10fd6bcd848c6459478afe37e7cb07631e48f13</originalsourceid><addsrcrecordid>eNpVUdtKw0AQXUSxpfYHfJD8QOpeks1GRCnFGxT6os_LZjNJt-TGZhP0791Qlfo0tzOHmXMQuiZ4RTDht4fVp7b1imJKfQNzSs_QnHLOQ5ak5Pwkn6Fl3x8wxjQmRDB8iWYsjkXEKZ4ju7bOFEYbVQWmcVBVpoRGgy-CGnI_aOAu2I1gdVubpgxaG1jQqjNuqJSbOr2zg3aD9Qx6r6oKmhL6wLWBqTvbjhOk80hoXKCVhccrdFGoqoflT1ygj-en981ruN29vG3W2xCo4C6MU5ykXNAcFGUUaMIzLFgmdEZwkfNM5yISmkdxGiVCFcASSHSGE84IRKIgbIEejrzdkPlXtD_A3yg7a2plv2SrjPw_acxelu0oU8JYxLEnuDkl-Nv8Vc8D7o8A8G-MBqzstZnUy43XyMm8NZJgOfklD3LyS05-yaNf7Buf_ovT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?</title><source>Open Access: PubMed Central</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>London, Alex John</creator><creatorcontrib>London, Alex John</creatorcontrib><description>There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the safety and efficacy of health services and the efficiency of health systems. To realize this potential, however, AI systems will have to overcome structural problems in the culture and practice of medicine and the organization of health systems that impact the data from which AI models are built, the environments into which they will be deployed, and the practices and incentives that structure their development. This perspective elaborates on some of these structural challenges and provides recommendations to address potential shortcomings. [Display omitted] Alex John London argues that AI is unlikely to promote the learning necessary to ensure that therapeutic intent translates into beneficial patient outcomes until it overcomes structural challenges in medicine’s knowledge ecosystem. He identifies these challenges and provides recommendations to improve AI’s ability to bridge important healthcare knowledge gaps.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2022.100622</identifier><identifier>PMID: 35584620</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; bias ; bioethics ; equity ; healthcare ; Humans ; learning health systems ; Medicine ; Patient Care ; research ethics ; social determinants of health ; social value ; structural injustice</subject><ispartof>Cell reports. Medicine, 2022-05, Vol.3 (5), p.100622, Article 100622</ispartof><rights>2022 The Author</rights><rights>Copyright © 2022 The Author. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Author 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6450-0309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133460/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666379122001392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35584620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>London, Alex John</creatorcontrib><title>Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the safety and efficacy of health services and the efficiency of health systems. To realize this potential, however, AI systems will have to overcome structural problems in the culture and practice of medicine and the organization of health systems that impact the data from which AI models are built, the environments into which they will be deployed, and the practices and incentives that structure their development. This perspective elaborates on some of these structural challenges and provides recommendations to address potential shortcomings. [Display omitted] Alex John London argues that AI is unlikely to promote the learning necessary to ensure that therapeutic intent translates into beneficial patient outcomes until it overcomes structural challenges in medicine’s knowledge ecosystem. He identifies these challenges and provides recommendations to improve AI’s ability to bridge important healthcare knowledge gaps.</description><subject>Artificial Intelligence</subject><subject>bias</subject><subject>bioethics</subject><subject>equity</subject><subject>healthcare</subject><subject>Humans</subject><subject>learning health systems</subject><subject>Medicine</subject><subject>Patient Care</subject><subject>research ethics</subject><subject>social determinants of health</subject><subject>social value</subject><subject>structural injustice</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUdtKw0AQXUSxpfYHfJD8QOpeks1GRCnFGxT6os_LZjNJt-TGZhP0791Qlfo0tzOHmXMQuiZ4RTDht4fVp7b1imJKfQNzSs_QnHLOQ5ak5Pwkn6Fl3x8wxjQmRDB8iWYsjkXEKZ4ju7bOFEYbVQWmcVBVpoRGgy-CGnI_aOAu2I1gdVubpgxaG1jQqjNuqJSbOr2zg3aD9Qx6r6oKmhL6wLWBqTvbjhOk80hoXKCVhccrdFGoqoflT1ygj-en981ruN29vG3W2xCo4C6MU5ykXNAcFGUUaMIzLFgmdEZwkfNM5yISmkdxGiVCFcASSHSGE84IRKIgbIEejrzdkPlXtD_A3yg7a2plv2SrjPw_acxelu0oU8JYxLEnuDkl-Nv8Vc8D7o8A8G-MBqzstZnUy43XyMm8NZJgOfklD3LyS05-yaNf7Buf_ovT</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>London, Alex John</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6450-0309</orcidid></search><sort><creationdate>20220517</creationdate><title>Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?</title><author>London, Alex John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e286t-59079682dea232e276b083b8cb10fd6bcd848c6459478afe37e7cb07631e48f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>bias</topic><topic>bioethics</topic><topic>equity</topic><topic>healthcare</topic><topic>Humans</topic><topic>learning health systems</topic><topic>Medicine</topic><topic>Patient Care</topic><topic>research ethics</topic><topic>social determinants of health</topic><topic>social value</topic><topic>structural injustice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>London, Alex John</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>London, Alex John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2022-05-17</date><risdate>2022</risdate><volume>3</volume><issue>5</issue><spage>100622</spage><pages>100622-</pages><artnum>100622</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the safety and efficacy of health services and the efficiency of health systems. To realize this potential, however, AI systems will have to overcome structural problems in the culture and practice of medicine and the organization of health systems that impact the data from which AI models are built, the environments into which they will be deployed, and the practices and incentives that structure their development. This perspective elaborates on some of these structural challenges and provides recommendations to address potential shortcomings. [Display omitted] Alex John London argues that AI is unlikely to promote the learning necessary to ensure that therapeutic intent translates into beneficial patient outcomes until it overcomes structural challenges in medicine’s knowledge ecosystem. He identifies these challenges and provides recommendations to improve AI’s ability to bridge important healthcare knowledge gaps.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35584620</pmid><doi>10.1016/j.xcrm.2022.100622</doi><orcidid>https://orcid.org/0000-0002-6450-0309</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3791
ispartof Cell reports. Medicine, 2022-05, Vol.3 (5), p.100622, Article 100622
issn 2666-3791
2666-3791
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9133460
source Open Access: PubMed Central; ScienceDirect - Connect here FIRST to enable access
subjects Artificial Intelligence
bias
bioethics
equity
healthcare
Humans
learning health systems
Medicine
Patient Care
research ethics
social determinants of health
social value
structural injustice
title Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient care?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20medicine:%20Overcoming%20or%20recapitulating%20structural%20challenges%20to%20improving%20patient%20care?&rft.jtitle=Cell%20reports.%20Medicine&rft.au=London,%20Alex%20John&rft.date=2022-05-17&rft.volume=3&rft.issue=5&rft.spage=100622&rft.pages=100622-&rft.artnum=100622&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2022.100622&rft_dat=%3Cpubmed_elsev%3E35584620%3C/pubmed_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e286t-59079682dea232e276b083b8cb10fd6bcd848c6459478afe37e7cb07631e48f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35584620&rfr_iscdi=true