Loading…

1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives

5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magne...

Full description

Saved in:
Bibliographic Details
Published in:ACS Physical Chemistry Au 2022-05, Vol.2 (3), p.237-246
Main Authors: Dubini, Romeo C. A., Korytiaková, Eva, Schinkel, Thea, Heinrichs, Pia, Carell, Thomas, Rovó, Petra
Format: Article
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 246
container_issue 3
container_start_page 237
container_title ACS Physical Chemistry Au
container_volume 2
creator Dubini, Romeo C. A.
Korytiaková, Eva
Schinkel, Thea
Heinrichs, Pia
Carell, Thomas
Rovó, Petra
description 5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10–20 kJ mol–1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC’s subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
doi_str_mv 10.1021/acsphyschemau.1c00050
format article
fullrecord <record><control><sourceid>proquest_N~.</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9137243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672327846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-9feee3f827a3545ab4eb9f00939a1bdae5abf402f0d138dd604ab18392d651453</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoKupPEHL0Us3nflwEqR8VqoLoOcwmEzey3dTNbrH-erfYgz3NMO_DA8NLyDlnl5wJfgU2Let1sjUuYLjkljGm2R45FlmpJkIpvf9vPyJnKX2OiNBcikwfkiOpM5nnBT8mjs_o89MrnY6qYKGhd9-2hvYD6Rvaug1fAyb6iisco3ncANA6-tDEasN6j7ZPNHr68h1c-EFHp-s-ptAivcUurKAPK0yn5MBDk_BsO0_I-_3d23Q2mb88PE5v5hMQmegnpUdE6QuRg9RKQ6WwKj1jpSyBVw5wPHnFhGeOy8K5jCmoeCFL4TLNlZYn5PrPuxyqBTqLbd9BY5ZdWEC3NhGC2U3aUJuPuDIll7lQchRcbAVd3Hzem0VIFpsGWoxDMiLLhRR5obIR5X_o2IX5jEPXjp8ZzsymILNTkNkWJH8BMdGHgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672327846</pqid></control><display><type>article</type><title>1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives</title><source>American Chemical Society (ACS) Open Access</source><creator>Dubini, Romeo C. A. ; Korytiaková, Eva ; Schinkel, Thea ; Heinrichs, Pia ; Carell, Thomas ; Rovó, Petra</creator><creatorcontrib>Dubini, Romeo C. A. ; Korytiaková, Eva ; Schinkel, Thea ; Heinrichs, Pia ; Carell, Thomas ; Rovó, Petra</creatorcontrib><description>5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10–20 kJ mol–1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC’s subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.</description><identifier>ISSN: 2694-2445</identifier><identifier>EISSN: 2694-2445</identifier><identifier>DOI: 10.1021/acsphyschemau.1c00050</identifier><identifier>PMID: 35637781</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS Physical Chemistry Au, 2022-05, Vol.2 (3), p.237-246</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3128-6676 ; 0000-0001-6045-271X ; 0000-0001-8729-7326 ; 0000-0002-1891-2660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.1c00050$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphyschemau.1c00050$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27078,27922,27923,53789,53791,56760,56810</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1021/acsphyschemau.1c00050$$EView_record_in_American_Chemical_Society$$FView_record_in_$$GAmerican_Chemical_Society</linktorsrc></links><search><creatorcontrib>Dubini, Romeo C. A.</creatorcontrib><creatorcontrib>Korytiaková, Eva</creatorcontrib><creatorcontrib>Schinkel, Thea</creatorcontrib><creatorcontrib>Heinrichs, Pia</creatorcontrib><creatorcontrib>Carell, Thomas</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><title>1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives</title><title>ACS Physical Chemistry Au</title><addtitle>ACS Phys. Chem Au</addtitle><description>5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10–20 kJ mol–1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC’s subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.</description><issn>2694-2445</issn><issn>2694-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMoKupPEHL0Us3nflwEqR8VqoLoOcwmEzey3dTNbrH-erfYgz3NMO_DA8NLyDlnl5wJfgU2Let1sjUuYLjkljGm2R45FlmpJkIpvf9vPyJnKX2OiNBcikwfkiOpM5nnBT8mjs_o89MrnY6qYKGhd9-2hvYD6Rvaug1fAyb6iisco3ncANA6-tDEasN6j7ZPNHr68h1c-EFHp-s-ptAivcUurKAPK0yn5MBDk_BsO0_I-_3d23Q2mb88PE5v5hMQmegnpUdE6QuRg9RKQ6WwKj1jpSyBVw5wPHnFhGeOy8K5jCmoeCFL4TLNlZYn5PrPuxyqBTqLbd9BY5ZdWEC3NhGC2U3aUJuPuDIll7lQchRcbAVd3Hzem0VIFpsGWoxDMiLLhRR5obIR5X_o2IX5jEPXjp8ZzsymILNTkNkWJH8BMdGHgA</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Dubini, Romeo C. A.</creator><creator>Korytiaková, Eva</creator><creator>Schinkel, Thea</creator><creator>Heinrichs, Pia</creator><creator>Carell, Thomas</creator><creator>Rovó, Petra</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3128-6676</orcidid><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid><orcidid>https://orcid.org/0000-0002-1891-2660</orcidid></search><sort><creationdate>20220525</creationdate><title>1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives</title><author>Dubini, Romeo C. A. ; Korytiaková, Eva ; Schinkel, Thea ; Heinrichs, Pia ; Carell, Thomas ; Rovó, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-9feee3f827a3545ab4eb9f00939a1bdae5abf402f0d138dd604ab18392d651453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubini, Romeo C. A.</creatorcontrib><creatorcontrib>Korytiaková, Eva</creatorcontrib><creatorcontrib>Schinkel, Thea</creatorcontrib><creatorcontrib>Heinrichs, Pia</creatorcontrib><creatorcontrib>Carell, Thomas</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS Physical Chemistry Au</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubini, Romeo C. A.</au><au>Korytiaková, Eva</au><au>Schinkel, Thea</au><au>Heinrichs, Pia</au><au>Carell, Thomas</au><au>Rovó, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives</atitle><jtitle>ACS Physical Chemistry Au</jtitle><addtitle>ACS Phys. Chem Au</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>2</volume><issue>3</issue><spage>237</spage><epage>246</epage><pages>237-246</pages><issn>2694-2445</issn><eissn>2694-2445</eissn><abstract>5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10–20 kJ mol–1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC’s subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.</abstract><pub>American Chemical Society</pub><pmid>35637781</pmid><doi>10.1021/acsphyschemau.1c00050</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3128-6676</orcidid><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid><orcidid>https://orcid.org/0000-0002-1891-2660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2694-2445
ispartof ACS Physical Chemistry Au, 2022-05, Vol.2 (3), p.237-246
issn 2694-2445
2694-2445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9137243
source American Chemical Society (ACS) Open Access
title 1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_N~.&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1H%20NMR%20Chemical%20Exchange%20Techniques%20Reveal%20Local%20and%20Global%20Effects%20of%20Oxidized%20Cytosine%20Derivatives&rft.jtitle=ACS%20Physical%20Chemistry%20Au&rft.au=Dubini,%20Romeo%20C.%20A.&rft.date=2022-05-25&rft.volume=2&rft.issue=3&rft.spage=237&rft.epage=246&rft.pages=237-246&rft.issn=2694-2445&rft.eissn=2694-2445&rft_id=info:doi/10.1021/acsphyschemau.1c00050&rft_dat=%3Cproquest_N~.%3E2672327846%3C/proquest_N~.%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a262t-9feee3f827a3545ab4eb9f00939a1bdae5abf402f0d138dd604ab18392d651453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672327846&rft_id=info:pmid/35637781&rfr_iscdi=true