Loading…
Management of Solid Waste Containing Fluoride-A Review
Technological and economic development have influenced the amount of post-production waste. Post-industrial waste, generated in the most considerable amount, includes, among others, waste related to the mining, metallurgical, and energy industries. Various non-hazardous or hazardous wastes can be us...
Saved in:
Published in: | Materials 2022-05, Vol.15 (10), p.3461 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Technological and economic development have influenced the amount of post-production waste. Post-industrial waste, generated in the most considerable amount, includes, among others, waste related to the mining, metallurgical, and energy industries. Various non-hazardous or hazardous wastes can be used to produce new construction materials after the "solidification/stabilization" processes. They can be used as admixtures or raw materials. However, the production of construction materials from various non-hazardous or hazardous waste materials is still very limited. In our opinion, special attention should be paid to waste containing fluoride, and the reuse of solid waste containing fluoride is a high priority today. Fluoride is one of the few trace elements that has received much attention due to its harmful effects on the environment and human and animal health. In addition to natural sources, industry, which discharges wastewater containing F- ions into surface waters, also increases fluoride concentration in waters and pollutes the environment. Therefore, developing effective and robust technologies to remove fluoride excess from the aquatic environment is becoming extremely important. This review aims to cover a wide variety of procedures that have been used to remove fluoride from drinking water and industrial wastewater. In addition, the ability to absorb fluoride, among others, by industrial by-products, agricultural waste, and biomass materials were reviewed. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15103461 |