Loading…

Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions

The problem of diffusion-controlled growth following an instantaneous nucleation event was studied within the framework of a new numerical model, considering the spatial distribution of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the collision of 3D d...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-05, Vol.15 (10), p.3603
Main Authors: Kosov, Alexander V, Grishenkova, Olga V, Isaev, Vladimir A, Zaikov, Yuriy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023
cites cdi_FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023
container_end_page
container_issue 10
container_start_page 3603
container_title Materials
container_volume 15
creator Kosov, Alexander V
Grishenkova, Olga V
Isaev, Vladimir A
Zaikov, Yuriy
description The problem of diffusion-controlled growth following an instantaneous nucleation event was studied within the framework of a new numerical model, considering the spatial distribution of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the collision of 3D diffusion fields. The simulation of the diffusion-controlled growth of hexagonal and random ensembles was performed at the overpotential-dependent number density of nuclei. The diffusion flow to each nucleus within a random ensemble was simulated by the finite difference method using the derived analytical expressions for the surface areas and the volumes formed at the intersection of 3D diffusion fields with the side faces of a virtual right prism with a Voronoi polygon base. The implementation of this approach provides an accurate calculation of concentration profiles, time dependences of the size of nuclei, and current transients. The results, including total current density transients, growth exponents, and nucleus size distribution, were compared with models developed within the concept of planar diffusion zones, the mean-field approximation and the Brownian dynamics simulation method, as well as with experimental data from the literature. The prospects of the model for studying the initial stages of electrocrystallization were discussed.
doi_str_mv 10.3390/ma15103603
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9147730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670348535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023</originalsourceid><addsrcrecordid>eNpdkV9rFTEQxUNR2lL74gcoC74UYTXJJNnkpVCuWgtFBfU5ZDezNmV3c5tkFb-9ufSP1bxMZuaXwwmHkJeMvgEw9O3smGQUFIU9csiMUS0zQjx7cj8gxznf0HoAmOZmnxyAVNwoEIek_xrmdXIlxKWJY_MujOOaa9Nu4lJSnCb0zUWKv8r1bn25FEwet7h4XErzaR0mDM1au9R8iaXOQsylqg1Nfe_DTja_IM9HN2U8vq9H5PuH9982H9urzxeXm_OrdgBQpeVCey96bZznoMEJ5BK57rxndJRSaCUYopBceaF61znkVOJglBsH11MOR-TsTne79jP6obpJbrLbFGaXftvogv13s4Rr-yP-tIaJrgNaBU7vBVK8XTEXO4c84DS5BeOaLVcd4xo0ZRV99R96E9e01O_tKApCS5CVen1HDSnmnHB8NMOo3aVn_6ZX4ZOn9h_Rh6zgDzOIlqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670348535</pqid></control><display><type>article</type><title>Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Kosov, Alexander V ; Grishenkova, Olga V ; Isaev, Vladimir A ; Zaikov, Yuriy</creator><creatorcontrib>Kosov, Alexander V ; Grishenkova, Olga V ; Isaev, Vladimir A ; Zaikov, Yuriy</creatorcontrib><description>The problem of diffusion-controlled growth following an instantaneous nucleation event was studied within the framework of a new numerical model, considering the spatial distribution of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the collision of 3D diffusion fields. The simulation of the diffusion-controlled growth of hexagonal and random ensembles was performed at the overpotential-dependent number density of nuclei. The diffusion flow to each nucleus within a random ensemble was simulated by the finite difference method using the derived analytical expressions for the surface areas and the volumes formed at the intersection of 3D diffusion fields with the side faces of a virtual right prism with a Voronoi polygon base. The implementation of this approach provides an accurate calculation of concentration profiles, time dependences of the size of nuclei, and current transients. The results, including total current density transients, growth exponents, and nucleus size distribution, were compared with models developed within the concept of planar diffusion zones, the mean-field approximation and the Brownian dynamics simulation method, as well as with experimental data from the literature. The prospects of the model for studying the initial stages of electrocrystallization were discussed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15103603</identifier><identifier>PMID: 35629634</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Approximation ; Diffusion ; Electrodes ; Finite difference method ; Kinetics ; Mathematical analysis ; Nucleation ; Nuclei ; Numerical models ; Simulation ; Size distribution ; Spatial distribution</subject><ispartof>Materials, 2022-05, Vol.15 (10), p.3603</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023</citedby><cites>FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023</cites><orcidid>0000-0001-5880-1634 ; 0000-0002-7013-8991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670348535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670348535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35629634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosov, Alexander V</creatorcontrib><creatorcontrib>Grishenkova, Olga V</creatorcontrib><creatorcontrib>Isaev, Vladimir A</creatorcontrib><creatorcontrib>Zaikov, Yuriy</creatorcontrib><title>Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The problem of diffusion-controlled growth following an instantaneous nucleation event was studied within the framework of a new numerical model, considering the spatial distribution of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the collision of 3D diffusion fields. The simulation of the diffusion-controlled growth of hexagonal and random ensembles was performed at the overpotential-dependent number density of nuclei. The diffusion flow to each nucleus within a random ensemble was simulated by the finite difference method using the derived analytical expressions for the surface areas and the volumes formed at the intersection of 3D diffusion fields with the side faces of a virtual right prism with a Voronoi polygon base. The implementation of this approach provides an accurate calculation of concentration profiles, time dependences of the size of nuclei, and current transients. The results, including total current density transients, growth exponents, and nucleus size distribution, were compared with models developed within the concept of planar diffusion zones, the mean-field approximation and the Brownian dynamics simulation method, as well as with experimental data from the literature. The prospects of the model for studying the initial stages of electrocrystallization were discussed.</description><subject>Approximation</subject><subject>Diffusion</subject><subject>Electrodes</subject><subject>Finite difference method</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Nucleation</subject><subject>Nuclei</subject><subject>Numerical models</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Spatial distribution</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV9rFTEQxUNR2lL74gcoC74UYTXJJNnkpVCuWgtFBfU5ZDezNmV3c5tkFb-9ufSP1bxMZuaXwwmHkJeMvgEw9O3smGQUFIU9csiMUS0zQjx7cj8gxznf0HoAmOZmnxyAVNwoEIek_xrmdXIlxKWJY_MujOOaa9Nu4lJSnCb0zUWKv8r1bn25FEwet7h4XErzaR0mDM1au9R8iaXOQsylqg1Nfe_DTja_IM9HN2U8vq9H5PuH9982H9urzxeXm_OrdgBQpeVCey96bZznoMEJ5BK57rxndJRSaCUYopBceaF61znkVOJglBsH11MOR-TsTne79jP6obpJbrLbFGaXftvogv13s4Rr-yP-tIaJrgNaBU7vBVK8XTEXO4c84DS5BeOaLVcd4xo0ZRV99R96E9e01O_tKApCS5CVen1HDSnmnHB8NMOo3aVn_6ZX4ZOn9h_Rh6zgDzOIlqo</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Kosov, Alexander V</creator><creator>Grishenkova, Olga V</creator><creator>Isaev, Vladimir A</creator><creator>Zaikov, Yuriy</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5880-1634</orcidid><orcidid>https://orcid.org/0000-0002-7013-8991</orcidid></search><sort><creationdate>20220518</creationdate><title>Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions</title><author>Kosov, Alexander V ; Grishenkova, Olga V ; Isaev, Vladimir A ; Zaikov, Yuriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Diffusion</topic><topic>Electrodes</topic><topic>Finite difference method</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Nucleation</topic><topic>Nuclei</topic><topic>Numerical models</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosov, Alexander V</creatorcontrib><creatorcontrib>Grishenkova, Olga V</creatorcontrib><creatorcontrib>Isaev, Vladimir A</creatorcontrib><creatorcontrib>Zaikov, Yuriy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosov, Alexander V</au><au>Grishenkova, Olga V</au><au>Isaev, Vladimir A</au><au>Zaikov, Yuriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-05-18</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>3603</spage><pages>3603-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The problem of diffusion-controlled growth following an instantaneous nucleation event was studied within the framework of a new numerical model, considering the spatial distribution of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the collision of 3D diffusion fields. The simulation of the diffusion-controlled growth of hexagonal and random ensembles was performed at the overpotential-dependent number density of nuclei. The diffusion flow to each nucleus within a random ensemble was simulated by the finite difference method using the derived analytical expressions for the surface areas and the volumes formed at the intersection of 3D diffusion fields with the side faces of a virtual right prism with a Voronoi polygon base. The implementation of this approach provides an accurate calculation of concentration profiles, time dependences of the size of nuclei, and current transients. The results, including total current density transients, growth exponents, and nucleus size distribution, were compared with models developed within the concept of planar diffusion zones, the mean-field approximation and the Brownian dynamics simulation method, as well as with experimental data from the literature. The prospects of the model for studying the initial stages of electrocrystallization were discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35629634</pmid><doi>10.3390/ma15103603</doi><orcidid>https://orcid.org/0000-0001-5880-1634</orcidid><orcidid>https://orcid.org/0000-0002-7013-8991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-05, Vol.15 (10), p.3603
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9147730
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Approximation
Diffusion
Electrodes
Finite difference method
Kinetics
Mathematical analysis
Nucleation
Nuclei
Numerical models
Simulation
Size distribution
Spatial distribution
title Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Diffusion-Controlled%20Growth%20of%20Interdependent%20Nuclei%20under%20Potentiostatic%20Conditions&rft.jtitle=Materials&rft.au=Kosov,%20Alexander%20V&rft.date=2022-05-18&rft.volume=15&rft.issue=10&rft.spage=3603&rft.pages=3603-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15103603&rft_dat=%3Cproquest_pubme%3E2670348535%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-248dd4b89ad2383a4e25e287dd10f5548641ee4526d46ba7ae205ec96afcab023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670348535&rft_id=info:pmid/35629634&rfr_iscdi=true