Loading…
Experimental and Theoretical Investigations of Fe-Doped Hexagonal MnNiGe
We report a comprehensive investigation of MnNi0.7Fe0.3Ge Heusler alloy to explore its magnetic, caloric, and electrical transport properties. The alloy undergoes a ferromagnetic transition across T C ∼ 212 K and a weak-antiferromagnetic transition across T t ∼ 180 K followed by a spin-glass transit...
Saved in:
Published in: | ACS omega 2022-05, Vol.7 (21), p.18110-18121 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a comprehensive investigation of MnNi0.7Fe0.3Ge Heusler alloy to explore its magnetic, caloric, and electrical transport properties. The alloy undergoes a ferromagnetic transition across T C ∼ 212 K and a weak-antiferromagnetic transition across T t ∼ 180 K followed by a spin-glass transition below T f ∼ 51.85 K. A second-order phase transition across T C with mixed short and long-range magnetic interactions is confirmed through the critical exponent study and universal scaling of magnetic entropy and magnetoresistance. A weak first-order phase transition is evident across T t from magnetization and specific heat data. The frequency dependent cusp in χAC(T) along with the absence of a clear magnetic transition in specific heat C(T) and resistivity ρ(T) establish the spin glass behavior below T f. Mixed ferromagnetic and antiferromagnetic interactions with dominant ferromagnetic coupling, as revealed by density functional calculations, are experimentally evident from the large positive Weiss temperature, magnetic saturation, and negative magnetic-entropy and magnetoresistance. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c01571 |