Loading…

Green two-echelon closed and open location-routing problem: application of NSGA-II and MOGWO metaheuristic approaches

Nowadays organizations outsource transportation of goods or services to reduce cost which leads to a particular type of problem called open location-routing. Also, each logistic organization possesses a limited number of specific vehicles that may not be enough in certain circumstances. This issue i...

Full description

Saved in:
Bibliographic Details
Published in:Environment, development and sustainability development and sustainability, 2023-09, Vol.25 (9), p.9163-9199
Main Authors: Heidari, Ali, Imani, Din Mohammad, Khalilzadeh, Mohammad, Sarbazvatan, Mahdieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays organizations outsource transportation of goods or services to reduce cost which leads to a particular type of problem called open location-routing. Also, each logistic organization possesses a limited number of specific vehicles that may not be enough in certain circumstances. This issue indicates the importance of simultaneously considering both open and closed routs. On the other hand, the growing concerns about the detrimental environmental impacts of human activities reveal the necessity of paying attention to environmental issues in logistics. In this study, a bi-objective mathematical programming model is proposed for two-echelon close and open location-routing problem (2E-COLRP) including two echelons of factories, depots and customers to minimize costs and CO 2 emissions. The proposed model finds the optimal routs, optimal number of vehicles and facilities as well as the locations of facilities. The augmented epsilon constraint method is used as an exact method to solve the small-sized problems. Due to complexity of model, two metaheuristic algorithms named MOGWO and NSGA-II are utilized to tackle the problems. The efficiency of two aforementioned algorithms is evaluated in terms of several indices considering 22 problem instances with various sizes. The results show that MOGWO performs better than NSGA-II.
ISSN:1387-585X
1573-2975
DOI:10.1007/s10668-022-02429-w