Loading…
Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas
Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array 1 . Spacer insertion is carried out by the Cas1–Cas2 integrase complex 2 – 4 . A substantial fraction of CRISPR–Cas systems use a Fe–S cluster containing Cas4 nuclease to...
Saved in:
Published in: | Nature (London) 2021-10, Vol.598 (7881), p.515-520 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03 |
---|---|
cites | cdi_FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03 |
container_end_page | 520 |
container_issue | 7881 |
container_start_page | 515 |
container_title | Nature (London) |
container_volume | 598 |
creator | Hu, Chunyi Almendros, Cristóbal Nam, Ki Hyun Costa, Ana Rita Vink, Jochem N. A. Haagsma, Anna C. Bagde, Saket R. Brouns, Stan J. J. Ke, Ailong |
description | Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array
1
. Spacer insertion is carried out by the Cas1–Cas2 integrase complex
2
–
4
. A substantial fraction of CRISPR–Cas systems use a Fe–S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)
5
,
6
and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in
Geobacter sulfurreducens
, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3′-overhang trigger Cas4/Cas1–Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This ‘molecular constipation’ prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1–Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Structures of the Cas4–Cas1–Cas2 complex from
Geobacter sulfurreducens
show that a 3′-overhang in the protospacer adjacent motif is required for complex assembly and spacer insertion into the CRISPR array. |
doi_str_mv | 10.1038/s41586-021-03951-z |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9164213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679675657</galeid><sourcerecordid>A679675657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03</originalsourceid><addsrcrecordid>eNp90t1u0zAUB_AIgVgZvAAXKIIbEMqw4--bSVU1oGh8qBvi0nKck8xTmrR2gsaueAfekCfBpWNbUEG-sGT_zt9RzkmSxxgdYETkq0AxkzxDOc4QUQxnl3eSCaaCZ5RLcTeZIJTLDEnC95IHIZwjhBgW9H6yRyiTkis8Sd69B3tmWheWadX5dGYCzUwILvRQpqXzYHvXtaZJw8pY8Kmx68EFtzlMXZvOFvOTT4uf33_EwofJvco0AR5d7fvJ59dHp7O32fHHN_PZ9DizXPA-owLluURWlZgXkpOiqAoDjCiorIKCAq2QLArBKBGVsUwoUZqqRIIwJC0gsp8cbnNXQ7GE0kLbe9PolXdL47_pzjg9vmndma67r1phTnNMYsDzqwDfrQcIvV66YKFpTAvdEHTOhMRUKrmhz_6i593g4__YKEmFynOFblRtGtCurbr4rt2E6ikXigvGmYgq26FqaCF-ZNdC5eLxyD_d4e3KrfVtdLADxVXC0tmdqS9GBdH0cNHXZghBz08WY_vy33Z6-mX2Yazzrba-C8FDdd0SjPRmYPV2YHUcWP17YPVlLHpyu5nXJX8mNAKyBSFetTX4mw78J_YXWhbziA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584792290</pqid></control><display><type>article</type><title>Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas</title><source>Nature</source><creator>Hu, Chunyi ; Almendros, Cristóbal ; Nam, Ki Hyun ; Costa, Ana Rita ; Vink, Jochem N. A. ; Haagsma, Anna C. ; Bagde, Saket R. ; Brouns, Stan J. J. ; Ke, Ailong</creator><creatorcontrib>Hu, Chunyi ; Almendros, Cristóbal ; Nam, Ki Hyun ; Costa, Ana Rita ; Vink, Jochem N. A. ; Haagsma, Anna C. ; Bagde, Saket R. ; Brouns, Stan J. J. ; Ke, Ailong</creatorcontrib><description>Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array
1
. Spacer insertion is carried out by the Cas1–Cas2 integrase complex
2
–
4
. A substantial fraction of CRISPR–Cas systems use a Fe–S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)
5
,
6
and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in
Geobacter sulfurreducens
, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3′-overhang trigger Cas4/Cas1–Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This ‘molecular constipation’ prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1–Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Structures of the Cas4–Cas1–Cas2 complex from
Geobacter sulfurreducens
show that a 3′-overhang in the protospacer adjacent motif is required for complex assembly and spacer insertion into the CRISPR array.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03951-z</identifier><identifier>PMID: 34588691</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 45 ; 631/326/1320 ; 631/337/1644 ; 631/45/535/1258/1259 ; 631/45/607/1167 ; Biosynthesis ; Constipation ; CRISPR ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems ; Databases, Genetic ; Deoxyribonucleic acid ; Dissociation ; DNA ; Endonucleases - metabolism ; Genetic research ; Geobacter - enzymology ; Humanities and Social Sciences ; Insertion ; Integrase ; Integration ; Interfaces ; Microscopy ; Models, Molecular ; Molecular Conformation ; Molecular interactions ; multidisciplinary ; Nuclease ; Nucleotide Motifs ; Nucleotide sequence ; Prokaryotes ; Restriction enzymes, DNA ; Science ; Science (multidisciplinary) ; Spacer ; Spacers</subject><ispartof>Nature (London), 2021-10, Vol.598 (7881), p.515-520</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 21, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03</citedby><cites>FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03</cites><orcidid>0000-0003-3268-354X ; 0000-0001-6749-6408 ; 0000-0001-5957-7822 ; 0000-0002-9573-1724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34588691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Chunyi</creatorcontrib><creatorcontrib>Almendros, Cristóbal</creatorcontrib><creatorcontrib>Nam, Ki Hyun</creatorcontrib><creatorcontrib>Costa, Ana Rita</creatorcontrib><creatorcontrib>Vink, Jochem N. A.</creatorcontrib><creatorcontrib>Haagsma, Anna C.</creatorcontrib><creatorcontrib>Bagde, Saket R.</creatorcontrib><creatorcontrib>Brouns, Stan J. J.</creatorcontrib><creatorcontrib>Ke, Ailong</creatorcontrib><title>Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array
1
. Spacer insertion is carried out by the Cas1–Cas2 integrase complex
2
–
4
. A substantial fraction of CRISPR–Cas systems use a Fe–S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)
5
,
6
and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in
Geobacter sulfurreducens
, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3′-overhang trigger Cas4/Cas1–Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This ‘molecular constipation’ prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1–Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Structures of the Cas4–Cas1–Cas2 complex from
Geobacter sulfurreducens
show that a 3′-overhang in the protospacer adjacent motif is required for complex assembly and spacer insertion into the CRISPR array.</description><subject>101/28</subject><subject>45</subject><subject>631/326/1320</subject><subject>631/337/1644</subject><subject>631/45/535/1258/1259</subject><subject>631/45/607/1167</subject><subject>Biosynthesis</subject><subject>Constipation</subject><subject>CRISPR</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>Dissociation</subject><subject>DNA</subject><subject>Endonucleases - metabolism</subject><subject>Genetic research</subject><subject>Geobacter - enzymology</subject><subject>Humanities and Social Sciences</subject><subject>Insertion</subject><subject>Integrase</subject><subject>Integration</subject><subject>Interfaces</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular interactions</subject><subject>multidisciplinary</subject><subject>Nuclease</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequence</subject><subject>Prokaryotes</subject><subject>Restriction enzymes, DNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spacer</subject><subject>Spacers</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90t1u0zAUB_AIgVgZvAAXKIIbEMqw4--bSVU1oGh8qBvi0nKck8xTmrR2gsaueAfekCfBpWNbUEG-sGT_zt9RzkmSxxgdYETkq0AxkzxDOc4QUQxnl3eSCaaCZ5RLcTeZIJTLDEnC95IHIZwjhBgW9H6yRyiTkis8Sd69B3tmWheWadX5dGYCzUwILvRQpqXzYHvXtaZJw8pY8Kmx68EFtzlMXZvOFvOTT4uf33_EwofJvco0AR5d7fvJ59dHp7O32fHHN_PZ9DizXPA-owLluURWlZgXkpOiqAoDjCiorIKCAq2QLArBKBGVsUwoUZqqRIIwJC0gsp8cbnNXQ7GE0kLbe9PolXdL47_pzjg9vmndma67r1phTnNMYsDzqwDfrQcIvV66YKFpTAvdEHTOhMRUKrmhz_6i593g4__YKEmFynOFblRtGtCurbr4rt2E6ikXigvGmYgq26FqaCF-ZNdC5eLxyD_d4e3KrfVtdLADxVXC0tmdqS9GBdH0cNHXZghBz08WY_vy33Z6-mX2Yazzrba-C8FDdd0SjPRmYPV2YHUcWP17YPVlLHpyu5nXJX8mNAKyBSFetTX4mw78J_YXWhbziA</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Hu, Chunyi</creator><creator>Almendros, Cristóbal</creator><creator>Nam, Ki Hyun</creator><creator>Costa, Ana Rita</creator><creator>Vink, Jochem N. A.</creator><creator>Haagsma, Anna C.</creator><creator>Bagde, Saket R.</creator><creator>Brouns, Stan J. J.</creator><creator>Ke, Ailong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3268-354X</orcidid><orcidid>https://orcid.org/0000-0001-6749-6408</orcidid><orcidid>https://orcid.org/0000-0001-5957-7822</orcidid><orcidid>https://orcid.org/0000-0002-9573-1724</orcidid></search><sort><creationdate>20211021</creationdate><title>Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas</title><author>Hu, Chunyi ; Almendros, Cristóbal ; Nam, Ki Hyun ; Costa, Ana Rita ; Vink, Jochem N. A. ; Haagsma, Anna C. ; Bagde, Saket R. ; Brouns, Stan J. J. ; Ke, Ailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>45</topic><topic>631/326/1320</topic><topic>631/337/1644</topic><topic>631/45/535/1258/1259</topic><topic>631/45/607/1167</topic><topic>Biosynthesis</topic><topic>Constipation</topic><topic>CRISPR</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>Dissociation</topic><topic>DNA</topic><topic>Endonucleases - metabolism</topic><topic>Genetic research</topic><topic>Geobacter - enzymology</topic><topic>Humanities and Social Sciences</topic><topic>Insertion</topic><topic>Integrase</topic><topic>Integration</topic><topic>Interfaces</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular interactions</topic><topic>multidisciplinary</topic><topic>Nuclease</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequence</topic><topic>Prokaryotes</topic><topic>Restriction enzymes, DNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spacer</topic><topic>Spacers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chunyi</creatorcontrib><creatorcontrib>Almendros, Cristóbal</creatorcontrib><creatorcontrib>Nam, Ki Hyun</creatorcontrib><creatorcontrib>Costa, Ana Rita</creatorcontrib><creatorcontrib>Vink, Jochem N. A.</creatorcontrib><creatorcontrib>Haagsma, Anna C.</creatorcontrib><creatorcontrib>Bagde, Saket R.</creatorcontrib><creatorcontrib>Brouns, Stan J. J.</creatorcontrib><creatorcontrib>Ke, Ailong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chunyi</au><au>Almendros, Cristóbal</au><au>Nam, Ki Hyun</au><au>Costa, Ana Rita</au><au>Vink, Jochem N. A.</au><au>Haagsma, Anna C.</au><au>Bagde, Saket R.</au><au>Brouns, Stan J. J.</au><au>Ke, Ailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>598</volume><issue>7881</issue><spage>515</spage><epage>520</epage><pages>515-520</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array
1
. Spacer insertion is carried out by the Cas1–Cas2 integrase complex
2
–
4
. A substantial fraction of CRISPR–Cas systems use a Fe–S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)
5
,
6
and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in
Geobacter sulfurreducens
, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3′-overhang trigger Cas4/Cas1–Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This ‘molecular constipation’ prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1–Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Structures of the Cas4–Cas1–Cas2 complex from
Geobacter sulfurreducens
show that a 3′-overhang in the protospacer adjacent motif is required for complex assembly and spacer insertion into the CRISPR array.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34588691</pmid><doi>10.1038/s41586-021-03951-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3268-354X</orcidid><orcidid>https://orcid.org/0000-0001-6749-6408</orcidid><orcidid>https://orcid.org/0000-0001-5957-7822</orcidid><orcidid>https://orcid.org/0000-0002-9573-1724</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-10, Vol.598 (7881), p.515-520 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9164213 |
source | Nature |
subjects | 101/28 45 631/326/1320 631/337/1644 631/45/535/1258/1259 631/45/607/1167 Biosynthesis Constipation CRISPR CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems Databases, Genetic Deoxyribonucleic acid Dissociation DNA Endonucleases - metabolism Genetic research Geobacter - enzymology Humanities and Social Sciences Insertion Integrase Integration Interfaces Microscopy Models, Molecular Molecular Conformation Molecular interactions multidisciplinary Nuclease Nucleotide Motifs Nucleotide sequence Prokaryotes Restriction enzymes, DNA Science Science (multidisciplinary) Spacer Spacers |
title | Mechanism for Cas4-assisted directional spacer acquisition in CRISPR–Cas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20for%20Cas4-assisted%20directional%20spacer%20acquisition%20in%20CRISPR%E2%80%93Cas&rft.jtitle=Nature%20(London)&rft.au=Hu,%20Chunyi&rft.date=2021-10-21&rft.volume=598&rft.issue=7881&rft.spage=515&rft.epage=520&rft.pages=515-520&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03951-z&rft_dat=%3Cgale_pubme%3EA679675657%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c676t-4702280c9d16b863bbfbae539efc9eb4e4f08bb75437fac5797dafd073508ce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584792290&rft_id=info:pmid/34588691&rft_galeid=A679675657&rfr_iscdi=true |