Loading…

Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases

We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on sing...

Full description

Saved in:
Bibliographic Details
Published in:Life science alliance 2022-10, Vol.5 (10), p.e202101316
Main Authors: Faccani, Cristina, Rotta, Gianluca, Clemente, Francesca, Fedeli, Maya, Abbati, Danilo, Manfredi, Francesco, Potenza, Alessia, Anselmo, Achille, Pedica, Federica, Fiorentini, Guido, Villa, Chiara, Protti, Maria P, Doglioni, Claudio, Aldrighetti, Luca, Bonini, Chiara, Casorati, Giulia, Dellabona, Paolo, de Lalla, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953
cites cdi_FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953
container_end_page
container_issue 10
container_start_page e202101316
container_title Life science alliance
container_volume 5
creator Faccani, Cristina
Rotta, Gianluca
Clemente, Francesca
Fedeli, Maya
Abbati, Danilo
Manfredi, Francesco
Potenza, Alessia
Anselmo, Achille
Pedica, Federica
Fiorentini, Guido
Villa, Chiara
Protti, Maria P
Doglioni, Claudio
Aldrighetti, Luca
Bonini, Chiara
Casorati, Giulia
Dellabona, Paolo
de Lalla, Claudia
description We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.
doi_str_mv 10.26508/lsa.202101316
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9166301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679236241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953</originalsourceid><addsrcrecordid>eNpVUU1PwzAMjRCITWNXzjly6UjSxmkuSGjiS5rEZcAxStN0C7TNSDpQ_z3dhxBIlmz5PT_LfghdUjJjwEl-XUc9Y4RRQlMKJ2jMuOAJJUKc_qlHaBrjOyGEDZHx7ByNUi5YxgQdo9c3Hz6q2n_jyge8dqt1UrrGttH5Vtd4j5i-843tQo_10Ouji9hXeImNreuIq-Ab3G2bYXwg6TiEjRforNJ1tNNjnqCX-7vl_DFZPD88zW8XiWE5g0TmuQEKhSyklkIaELyimkrDjQAGAFyXvMy1KNOCS5qVLMsgLUAwoBYkTyfo5qC72RaNLY1tu6BrtQmu0aFXXjv1H2ndWq38l5IUIB3eNkFXR4HgP7c2dqpxcXeYbq3fRsVASJYCy3bU2YFqgo8x2Op3DSVq74ca_FC_fqQ_xbF9Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679236241</pqid></control><display><type>article</type><title>Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases</title><source>Open Access: PubMed Central</source><creator>Faccani, Cristina ; Rotta, Gianluca ; Clemente, Francesca ; Fedeli, Maya ; Abbati, Danilo ; Manfredi, Francesco ; Potenza, Alessia ; Anselmo, Achille ; Pedica, Federica ; Fiorentini, Guido ; Villa, Chiara ; Protti, Maria P ; Doglioni, Claudio ; Aldrighetti, Luca ; Bonini, Chiara ; Casorati, Giulia ; Dellabona, Paolo ; de Lalla, Claudia</creator><creatorcontrib>Faccani, Cristina ; Rotta, Gianluca ; Clemente, Francesca ; Fedeli, Maya ; Abbati, Danilo ; Manfredi, Francesco ; Potenza, Alessia ; Anselmo, Achille ; Pedica, Federica ; Fiorentini, Guido ; Villa, Chiara ; Protti, Maria P ; Doglioni, Claudio ; Aldrighetti, Luca ; Bonini, Chiara ; Casorati, Giulia ; Dellabona, Paolo ; de Lalla, Claudia</creatorcontrib><description>We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.</description><identifier>ISSN: 2575-1077</identifier><identifier>EISSN: 2575-1077</identifier><identifier>DOI: 10.26508/lsa.202101316</identifier><identifier>PMID: 35724271</identifier><language>eng</language><publisher>Life Science Alliance LLC</publisher><subject>Methods</subject><ispartof>Life science alliance, 2022-10, Vol.5 (10), p.e202101316</ispartof><rights>2022 Faccani et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953</citedby><cites>FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953</cites><orcidid>0000-0002-4919-3574 ; 0000-0002-5102-4112 ; 0000-0002-5613-9453 ; 0000-0002-2095-590X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166301/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Faccani, Cristina</creatorcontrib><creatorcontrib>Rotta, Gianluca</creatorcontrib><creatorcontrib>Clemente, Francesca</creatorcontrib><creatorcontrib>Fedeli, Maya</creatorcontrib><creatorcontrib>Abbati, Danilo</creatorcontrib><creatorcontrib>Manfredi, Francesco</creatorcontrib><creatorcontrib>Potenza, Alessia</creatorcontrib><creatorcontrib>Anselmo, Achille</creatorcontrib><creatorcontrib>Pedica, Federica</creatorcontrib><creatorcontrib>Fiorentini, Guido</creatorcontrib><creatorcontrib>Villa, Chiara</creatorcontrib><creatorcontrib>Protti, Maria P</creatorcontrib><creatorcontrib>Doglioni, Claudio</creatorcontrib><creatorcontrib>Aldrighetti, Luca</creatorcontrib><creatorcontrib>Bonini, Chiara</creatorcontrib><creatorcontrib>Casorati, Giulia</creatorcontrib><creatorcontrib>Dellabona, Paolo</creatorcontrib><creatorcontrib>de Lalla, Claudia</creatorcontrib><title>Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases</title><title>Life science alliance</title><description>We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.</description><subject>Methods</subject><issn>2575-1077</issn><issn>2575-1077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PwzAMjRCITWNXzjly6UjSxmkuSGjiS5rEZcAxStN0C7TNSDpQ_z3dhxBIlmz5PT_LfghdUjJjwEl-XUc9Y4RRQlMKJ2jMuOAJJUKc_qlHaBrjOyGEDZHx7ByNUi5YxgQdo9c3Hz6q2n_jyge8dqt1UrrGttH5Vtd4j5i-843tQo_10Ouji9hXeImNreuIq-Ab3G2bYXwg6TiEjRforNJ1tNNjnqCX-7vl_DFZPD88zW8XiWE5g0TmuQEKhSyklkIaELyimkrDjQAGAFyXvMy1KNOCS5qVLMsgLUAwoBYkTyfo5qC72RaNLY1tu6BrtQmu0aFXXjv1H2ndWq38l5IUIB3eNkFXR4HgP7c2dqpxcXeYbq3fRsVASJYCy3bU2YFqgo8x2Op3DSVq74ca_FC_fqQ_xbF9Jg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Faccani, Cristina</creator><creator>Rotta, Gianluca</creator><creator>Clemente, Francesca</creator><creator>Fedeli, Maya</creator><creator>Abbati, Danilo</creator><creator>Manfredi, Francesco</creator><creator>Potenza, Alessia</creator><creator>Anselmo, Achille</creator><creator>Pedica, Federica</creator><creator>Fiorentini, Guido</creator><creator>Villa, Chiara</creator><creator>Protti, Maria P</creator><creator>Doglioni, Claudio</creator><creator>Aldrighetti, Luca</creator><creator>Bonini, Chiara</creator><creator>Casorati, Giulia</creator><creator>Dellabona, Paolo</creator><creator>de Lalla, Claudia</creator><general>Life Science Alliance LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4919-3574</orcidid><orcidid>https://orcid.org/0000-0002-5102-4112</orcidid><orcidid>https://orcid.org/0000-0002-5613-9453</orcidid><orcidid>https://orcid.org/0000-0002-2095-590X</orcidid></search><sort><creationdate>20221001</creationdate><title>Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases</title><author>Faccani, Cristina ; Rotta, Gianluca ; Clemente, Francesca ; Fedeli, Maya ; Abbati, Danilo ; Manfredi, Francesco ; Potenza, Alessia ; Anselmo, Achille ; Pedica, Federica ; Fiorentini, Guido ; Villa, Chiara ; Protti, Maria P ; Doglioni, Claudio ; Aldrighetti, Luca ; Bonini, Chiara ; Casorati, Giulia ; Dellabona, Paolo ; de Lalla, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faccani, Cristina</creatorcontrib><creatorcontrib>Rotta, Gianluca</creatorcontrib><creatorcontrib>Clemente, Francesca</creatorcontrib><creatorcontrib>Fedeli, Maya</creatorcontrib><creatorcontrib>Abbati, Danilo</creatorcontrib><creatorcontrib>Manfredi, Francesco</creatorcontrib><creatorcontrib>Potenza, Alessia</creatorcontrib><creatorcontrib>Anselmo, Achille</creatorcontrib><creatorcontrib>Pedica, Federica</creatorcontrib><creatorcontrib>Fiorentini, Guido</creatorcontrib><creatorcontrib>Villa, Chiara</creatorcontrib><creatorcontrib>Protti, Maria P</creatorcontrib><creatorcontrib>Doglioni, Claudio</creatorcontrib><creatorcontrib>Aldrighetti, Luca</creatorcontrib><creatorcontrib>Bonini, Chiara</creatorcontrib><creatorcontrib>Casorati, Giulia</creatorcontrib><creatorcontrib>Dellabona, Paolo</creatorcontrib><creatorcontrib>de Lalla, Claudia</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Life science alliance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faccani, Cristina</au><au>Rotta, Gianluca</au><au>Clemente, Francesca</au><au>Fedeli, Maya</au><au>Abbati, Danilo</au><au>Manfredi, Francesco</au><au>Potenza, Alessia</au><au>Anselmo, Achille</au><au>Pedica, Federica</au><au>Fiorentini, Guido</au><au>Villa, Chiara</au><au>Protti, Maria P</au><au>Doglioni, Claudio</au><au>Aldrighetti, Luca</au><au>Bonini, Chiara</au><au>Casorati, Giulia</au><au>Dellabona, Paolo</au><au>de Lalla, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases</atitle><jtitle>Life science alliance</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>e202101316</spage><pages>e202101316-</pages><issn>2575-1077</issn><eissn>2575-1077</eissn><abstract>We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.</abstract><pub>Life Science Alliance LLC</pub><pmid>35724271</pmid><doi>10.26508/lsa.202101316</doi><orcidid>https://orcid.org/0000-0002-4919-3574</orcidid><orcidid>https://orcid.org/0000-0002-5102-4112</orcidid><orcidid>https://orcid.org/0000-0002-5613-9453</orcidid><orcidid>https://orcid.org/0000-0002-2095-590X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2575-1077
ispartof Life science alliance, 2022-10, Vol.5 (10), p.e202101316
issn 2575-1077
2575-1077
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9166301
source Open Access: PubMed Central
subjects Methods
title Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workflow%20for%20high-dimensional%20flow%20cytometry%20analysis%20of%20T%20cells%20from%20tumor%20metastases&rft.jtitle=Life%20science%20alliance&rft.au=Faccani,%20Cristina&rft.date=2022-10-01&rft.volume=5&rft.issue=10&rft.spage=e202101316&rft.pages=e202101316-&rft.issn=2575-1077&rft.eissn=2575-1077&rft_id=info:doi/10.26508/lsa.202101316&rft_dat=%3Cproquest_pubme%3E2679236241%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2826-988c616b9b9a979c675f1a19c5c7626665ad5d8a7d3b5914d24463b67261e6953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679236241&rft_id=info:pmid/35724271&rfr_iscdi=true