Loading…
Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease
The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-04, Vol.119 (15), p.1-8 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803 |
---|---|
cites | cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803 |
container_end_page | 8 |
container_issue | 15 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Guzmán-Vélez, Edmarie Diez, Ibai Schoemaker, Dorothee Pardilla-Delgado, Enmanuelle Vila-Castelar, Clara Fox-Fuller, Joshua T. Baena, Ana Sperling, Reisa A. Johnson, Keith A. Lopera, Francisco Sepulcre, Jorge Quiroz, Yakeel T. |
description | The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia. |
doi_str_mv | 10.1073/pnas.2113641119 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27151827</jstor_id><sourcerecordid>27151827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</originalsourceid><addsrcrecordid>eNpdkc2KFDEUhYMoTju6dqUE3LipmfxWko3QDOMPDLiZfUilUtNpUkmZpAZ6VuJb-BrzID6ET2I1PbY_qwv3fPdwDweAlxidYSTo-RRNOSMY05ZhjNUjsMJI4aZlCj0GK4SIaCQj7AQ8K2WLEFJcoqfghHIqkUJ4Bb6tx11Ivm9-3EMTe1jNDCdTNymkG-8KzC6Y6mBNsPel-mirv3Wwy8ZH2O-KTTE6W9PobYHLasrOBh-9NQGauaaSRhOaftGjiRWuw93G-dHln1-_l72jM8U9B08GE4p78TBPwfX7y-uLj83V5w-fLtZXjaVcqoYQ2SmGDFO9wVwxK5iUVvSGis71rWRqGAZKWkK6gTo6ENoNTllmOyM7iegpeHewneZudL11sWYT9JT9aPJOJ-P1v0r0G32TbrXCrWoZXQzePhjk9GV2perRF-tCMNGluWjSMtFyLkS7oG_-Q7dpznFJt1CcUsoR4gt1fqBsTqVkNxyfwUjv69X7evWfepeL139nOPK_-1yAVwdgW2rKR50IzLEkgv4CW4GwZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653335005</pqid></control><display><type>article</type><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><source>PubMed Central</source><creator>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</creator><creatorcontrib>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</creatorcontrib><description>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2113641119</identifier><identifier>PMID: 35380901</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Age ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - genetics ; Alzheimer Disease - physiopathology ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Biological Sciences ; Brain ; Brain - diagnostic imaging ; Brain architecture ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Connectome ; Cortex (cingulate) ; Cortex (parietal) ; Cortex (temporal) ; Dementia ; Dementia disorders ; Heterozygote ; Humans ; In vivo methods and tests ; Integration ; Magnetic Resonance Imaging - methods ; Memory Disorders - diagnostic imaging ; Memory Disorders - genetics ; Memory, Episodic ; Mutation ; Neostriatum ; Neural networks ; Neurodegenerative diseases ; Pathology ; Positron-Emission Tomography - methods ; Prefrontal cortex ; Presenilin 1 ; Presenilin-1 - genetics ; Salience ; Tau protein ; tau Proteins - metabolism ; Thalamus ; Topology ; β-Amyloid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (15), p.1-8</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Apr 12, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</citedby><cites>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</cites><orcidid>0000-0003-3986-1484 ; 0000-0002-5622-4519 ; 0000-0001-5769-0178 ; 0000-0002-8779-1487 ; 0000-0003-1149-3157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guzmán-Vélez, Edmarie</creatorcontrib><creatorcontrib>Diez, Ibai</creatorcontrib><creatorcontrib>Schoemaker, Dorothee</creatorcontrib><creatorcontrib>Pardilla-Delgado, Enmanuelle</creatorcontrib><creatorcontrib>Vila-Castelar, Clara</creatorcontrib><creatorcontrib>Fox-Fuller, Joshua T.</creatorcontrib><creatorcontrib>Baena, Ana</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Quiroz, Yakeel T.</creatorcontrib><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</description><subject>Age</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Connectome</subject><subject>Cortex (cingulate)</subject><subject>Cortex (parietal)</subject><subject>Cortex (temporal)</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Integration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Memory Disorders - diagnostic imaging</subject><subject>Memory Disorders - genetics</subject><subject>Memory, Episodic</subject><subject>Mutation</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Pathology</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prefrontal cortex</subject><subject>Presenilin 1</subject><subject>Presenilin-1 - genetics</subject><subject>Salience</subject><subject>Tau protein</subject><subject>tau Proteins - metabolism</subject><subject>Thalamus</subject><subject>Topology</subject><subject>β-Amyloid</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc2KFDEUhYMoTju6dqUE3LipmfxWko3QDOMPDLiZfUilUtNpUkmZpAZ6VuJb-BrzID6ET2I1PbY_qwv3fPdwDweAlxidYSTo-RRNOSMY05ZhjNUjsMJI4aZlCj0GK4SIaCQj7AQ8K2WLEFJcoqfghHIqkUJ4Bb6tx11Ivm9-3EMTe1jNDCdTNymkG-8KzC6Y6mBNsPel-mirv3Wwy8ZH2O-KTTE6W9PobYHLasrOBh-9NQGauaaSRhOaftGjiRWuw93G-dHln1-_l72jM8U9B08GE4p78TBPwfX7y-uLj83V5w-fLtZXjaVcqoYQ2SmGDFO9wVwxK5iUVvSGis71rWRqGAZKWkK6gTo6ENoNTllmOyM7iegpeHewneZudL11sWYT9JT9aPJOJ-P1v0r0G32TbrXCrWoZXQzePhjk9GV2perRF-tCMNGluWjSMtFyLkS7oG_-Q7dpznFJt1CcUsoR4gt1fqBsTqVkNxyfwUjv69X7evWfepeL139nOPK_-1yAVwdgW2rKR50IzLEkgv4CW4GwZA</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Guzmán-Vélez, Edmarie</creator><creator>Diez, Ibai</creator><creator>Schoemaker, Dorothee</creator><creator>Pardilla-Delgado, Enmanuelle</creator><creator>Vila-Castelar, Clara</creator><creator>Fox-Fuller, Joshua T.</creator><creator>Baena, Ana</creator><creator>Sperling, Reisa A.</creator><creator>Johnson, Keith A.</creator><creator>Lopera, Francisco</creator><creator>Sepulcre, Jorge</creator><creator>Quiroz, Yakeel T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3986-1484</orcidid><orcidid>https://orcid.org/0000-0002-5622-4519</orcidid><orcidid>https://orcid.org/0000-0001-5769-0178</orcidid><orcidid>https://orcid.org/0000-0002-8779-1487</orcidid><orcidid>https://orcid.org/0000-0003-1149-3157</orcidid></search><sort><creationdate>20220412</creationdate><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><author>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Connectome</topic><topic>Cortex (cingulate)</topic><topic>Cortex (parietal)</topic><topic>Cortex (temporal)</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Integration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Memory Disorders - diagnostic imaging</topic><topic>Memory Disorders - genetics</topic><topic>Memory, Episodic</topic><topic>Mutation</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Pathology</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prefrontal cortex</topic><topic>Presenilin 1</topic><topic>Presenilin-1 - genetics</topic><topic>Salience</topic><topic>Tau protein</topic><topic>tau Proteins - metabolism</topic><topic>Thalamus</topic><topic>Topology</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán-Vélez, Edmarie</creatorcontrib><creatorcontrib>Diez, Ibai</creatorcontrib><creatorcontrib>Schoemaker, Dorothee</creatorcontrib><creatorcontrib>Pardilla-Delgado, Enmanuelle</creatorcontrib><creatorcontrib>Vila-Castelar, Clara</creatorcontrib><creatorcontrib>Fox-Fuller, Joshua T.</creatorcontrib><creatorcontrib>Baena, Ana</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Quiroz, Yakeel T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán-Vélez, Edmarie</au><au>Diez, Ibai</au><au>Schoemaker, Dorothee</au><au>Pardilla-Delgado, Enmanuelle</au><au>Vila-Castelar, Clara</au><au>Fox-Fuller, Joshua T.</au><au>Baena, Ana</au><au>Sperling, Reisa A.</au><au>Johnson, Keith A.</au><au>Lopera, Francisco</au><au>Sepulcre, Jorge</au><au>Quiroz, Yakeel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>119</volume><issue>15</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35380901</pmid><doi>10.1073/pnas.2113641119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3986-1484</orcidid><orcidid>https://orcid.org/0000-0002-5622-4519</orcidid><orcidid>https://orcid.org/0000-0001-5769-0178</orcidid><orcidid>https://orcid.org/0000-0002-8779-1487</orcidid><orcidid>https://orcid.org/0000-0003-1149-3157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (15), p.1-8 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169643 |
source | PubMed Central |
subjects | Age Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Alzheimer Disease - physiopathology Alzheimer's disease Amyloid beta-Peptides - metabolism Biological Sciences Brain Brain - diagnostic imaging Brain architecture Cognitive ability Cognitive Dysfunction - diagnostic imaging Connectome Cortex (cingulate) Cortex (parietal) Cortex (temporal) Dementia Dementia disorders Heterozygote Humans In vivo methods and tests Integration Magnetic Resonance Imaging - methods Memory Disorders - diagnostic imaging Memory Disorders - genetics Memory, Episodic Mutation Neostriatum Neural networks Neurodegenerative diseases Pathology Positron-Emission Tomography - methods Prefrontal cortex Presenilin 1 Presenilin-1 - genetics Salience Tau protein tau Proteins - metabolism Thalamus Topology β-Amyloid |
title | Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid-%CE%B2%20and%20tau%20pathologies%20relate%20to%20distinctive%20brain%20dysconnectomics%20in%20preclinical%20autosomal-dominant%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guzm%C3%A1n-V%C3%A9lez,%20Edmarie&rft.date=2022-04-12&rft.volume=119&rft.issue=15&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2113641119&rft_dat=%3Cjstor_pubme%3E27151827%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653335005&rft_id=info:pmid/35380901&rft_jstor_id=27151827&rfr_iscdi=true |