Loading…

Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease

The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-04, Vol.119 (15), p.1-8
Main Authors: Guzmán-Vélez, Edmarie, Diez, Ibai, Schoemaker, Dorothee, Pardilla-Delgado, Enmanuelle, Vila-Castelar, Clara, Fox-Fuller, Joshua T., Baena, Ana, Sperling, Reisa A., Johnson, Keith A., Lopera, Francisco, Sepulcre, Jorge, Quiroz, Yakeel T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803
cites cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803
container_end_page 8
container_issue 15
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Guzmán-Vélez, Edmarie
Diez, Ibai
Schoemaker, Dorothee
Pardilla-Delgado, Enmanuelle
Vila-Castelar, Clara
Fox-Fuller, Joshua T.
Baena, Ana
Sperling, Reisa A.
Johnson, Keith A.
Lopera, Francisco
Sepulcre, Jorge
Quiroz, Yakeel T.
description The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.
doi_str_mv 10.1073/pnas.2113641119
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27151827</jstor_id><sourcerecordid>27151827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</originalsourceid><addsrcrecordid>eNpdkc2KFDEUhYMoTju6dqUE3LipmfxWko3QDOMPDLiZfUilUtNpUkmZpAZ6VuJb-BrzID6ET2I1PbY_qwv3fPdwDweAlxidYSTo-RRNOSMY05ZhjNUjsMJI4aZlCj0GK4SIaCQj7AQ8K2WLEFJcoqfghHIqkUJ4Bb6tx11Ivm9-3EMTe1jNDCdTNymkG-8KzC6Y6mBNsPel-mirv3Wwy8ZH2O-KTTE6W9PobYHLasrOBh-9NQGauaaSRhOaftGjiRWuw93G-dHln1-_l72jM8U9B08GE4p78TBPwfX7y-uLj83V5w-fLtZXjaVcqoYQ2SmGDFO9wVwxK5iUVvSGis71rWRqGAZKWkK6gTo6ENoNTllmOyM7iegpeHewneZudL11sWYT9JT9aPJOJ-P1v0r0G32TbrXCrWoZXQzePhjk9GV2perRF-tCMNGluWjSMtFyLkS7oG_-Q7dpznFJt1CcUsoR4gt1fqBsTqVkNxyfwUjv69X7evWfepeL139nOPK_-1yAVwdgW2rKR50IzLEkgv4CW4GwZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653335005</pqid></control><display><type>article</type><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><source>PubMed Central</source><creator>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</creator><creatorcontrib>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</creatorcontrib><description>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2113641119</identifier><identifier>PMID: 35380901</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Age ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - genetics ; Alzheimer Disease - physiopathology ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Biological Sciences ; Brain ; Brain - diagnostic imaging ; Brain architecture ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Connectome ; Cortex (cingulate) ; Cortex (parietal) ; Cortex (temporal) ; Dementia ; Dementia disorders ; Heterozygote ; Humans ; In vivo methods and tests ; Integration ; Magnetic Resonance Imaging - methods ; Memory Disorders - diagnostic imaging ; Memory Disorders - genetics ; Memory, Episodic ; Mutation ; Neostriatum ; Neural networks ; Neurodegenerative diseases ; Pathology ; Positron-Emission Tomography - methods ; Prefrontal cortex ; Presenilin 1 ; Presenilin-1 - genetics ; Salience ; Tau protein ; tau Proteins - metabolism ; Thalamus ; Topology ; β-Amyloid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (15), p.1-8</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Apr 12, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</citedby><cites>FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</cites><orcidid>0000-0003-3986-1484 ; 0000-0002-5622-4519 ; 0000-0001-5769-0178 ; 0000-0002-8779-1487 ; 0000-0003-1149-3157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guzmán-Vélez, Edmarie</creatorcontrib><creatorcontrib>Diez, Ibai</creatorcontrib><creatorcontrib>Schoemaker, Dorothee</creatorcontrib><creatorcontrib>Pardilla-Delgado, Enmanuelle</creatorcontrib><creatorcontrib>Vila-Castelar, Clara</creatorcontrib><creatorcontrib>Fox-Fuller, Joshua T.</creatorcontrib><creatorcontrib>Baena, Ana</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Quiroz, Yakeel T.</creatorcontrib><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</description><subject>Age</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Connectome</subject><subject>Cortex (cingulate)</subject><subject>Cortex (parietal)</subject><subject>Cortex (temporal)</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Integration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Memory Disorders - diagnostic imaging</subject><subject>Memory Disorders - genetics</subject><subject>Memory, Episodic</subject><subject>Mutation</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Pathology</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prefrontal cortex</subject><subject>Presenilin 1</subject><subject>Presenilin-1 - genetics</subject><subject>Salience</subject><subject>Tau protein</subject><subject>tau Proteins - metabolism</subject><subject>Thalamus</subject><subject>Topology</subject><subject>β-Amyloid</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc2KFDEUhYMoTju6dqUE3LipmfxWko3QDOMPDLiZfUilUtNpUkmZpAZ6VuJb-BrzID6ET2I1PbY_qwv3fPdwDweAlxidYSTo-RRNOSMY05ZhjNUjsMJI4aZlCj0GK4SIaCQj7AQ8K2WLEFJcoqfghHIqkUJ4Bb6tx11Ivm9-3EMTe1jNDCdTNymkG-8KzC6Y6mBNsPel-mirv3Wwy8ZH2O-KTTE6W9PobYHLasrOBh-9NQGauaaSRhOaftGjiRWuw93G-dHln1-_l72jM8U9B08GE4p78TBPwfX7y-uLj83V5w-fLtZXjaVcqoYQ2SmGDFO9wVwxK5iUVvSGis71rWRqGAZKWkK6gTo6ENoNTllmOyM7iegpeHewneZudL11sWYT9JT9aPJOJ-P1v0r0G32TbrXCrWoZXQzePhjk9GV2perRF-tCMNGluWjSMtFyLkS7oG_-Q7dpznFJt1CcUsoR4gt1fqBsTqVkNxyfwUjv69X7evWfepeL139nOPK_-1yAVwdgW2rKR50IzLEkgv4CW4GwZA</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Guzmán-Vélez, Edmarie</creator><creator>Diez, Ibai</creator><creator>Schoemaker, Dorothee</creator><creator>Pardilla-Delgado, Enmanuelle</creator><creator>Vila-Castelar, Clara</creator><creator>Fox-Fuller, Joshua T.</creator><creator>Baena, Ana</creator><creator>Sperling, Reisa A.</creator><creator>Johnson, Keith A.</creator><creator>Lopera, Francisco</creator><creator>Sepulcre, Jorge</creator><creator>Quiroz, Yakeel T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3986-1484</orcidid><orcidid>https://orcid.org/0000-0002-5622-4519</orcidid><orcidid>https://orcid.org/0000-0001-5769-0178</orcidid><orcidid>https://orcid.org/0000-0002-8779-1487</orcidid><orcidid>https://orcid.org/0000-0003-1149-3157</orcidid></search><sort><creationdate>20220412</creationdate><title>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</title><author>Guzmán-Vélez, Edmarie ; Diez, Ibai ; Schoemaker, Dorothee ; Pardilla-Delgado, Enmanuelle ; Vila-Castelar, Clara ; Fox-Fuller, Joshua T. ; Baena, Ana ; Sperling, Reisa A. ; Johnson, Keith A. ; Lopera, Francisco ; Sepulcre, Jorge ; Quiroz, Yakeel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Connectome</topic><topic>Cortex (cingulate)</topic><topic>Cortex (parietal)</topic><topic>Cortex (temporal)</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Integration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Memory Disorders - diagnostic imaging</topic><topic>Memory Disorders - genetics</topic><topic>Memory, Episodic</topic><topic>Mutation</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Pathology</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prefrontal cortex</topic><topic>Presenilin 1</topic><topic>Presenilin-1 - genetics</topic><topic>Salience</topic><topic>Tau protein</topic><topic>tau Proteins - metabolism</topic><topic>Thalamus</topic><topic>Topology</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán-Vélez, Edmarie</creatorcontrib><creatorcontrib>Diez, Ibai</creatorcontrib><creatorcontrib>Schoemaker, Dorothee</creatorcontrib><creatorcontrib>Pardilla-Delgado, Enmanuelle</creatorcontrib><creatorcontrib>Vila-Castelar, Clara</creatorcontrib><creatorcontrib>Fox-Fuller, Joshua T.</creatorcontrib><creatorcontrib>Baena, Ana</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Quiroz, Yakeel T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán-Vélez, Edmarie</au><au>Diez, Ibai</au><au>Schoemaker, Dorothee</au><au>Pardilla-Delgado, Enmanuelle</au><au>Vila-Castelar, Clara</au><au>Fox-Fuller, Joshua T.</au><au>Baena, Ana</au><au>Sperling, Reisa A.</au><au>Johnson, Keith A.</au><au>Lopera, Francisco</au><au>Sepulcre, Jorge</au><au>Quiroz, Yakeel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>119</volume><issue>15</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-β and tau pathology in preclinical Alzheimer’s disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-β and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain’s functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35380901</pmid><doi>10.1073/pnas.2113641119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3986-1484</orcidid><orcidid>https://orcid.org/0000-0002-5622-4519</orcidid><orcidid>https://orcid.org/0000-0001-5769-0178</orcidid><orcidid>https://orcid.org/0000-0002-8779-1487</orcidid><orcidid>https://orcid.org/0000-0003-1149-3157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-04, Vol.119 (15), p.1-8
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169643
source PubMed Central
subjects Age
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - genetics
Alzheimer Disease - physiopathology
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Biological Sciences
Brain
Brain - diagnostic imaging
Brain architecture
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Connectome
Cortex (cingulate)
Cortex (parietal)
Cortex (temporal)
Dementia
Dementia disorders
Heterozygote
Humans
In vivo methods and tests
Integration
Magnetic Resonance Imaging - methods
Memory Disorders - diagnostic imaging
Memory Disorders - genetics
Memory, Episodic
Mutation
Neostriatum
Neural networks
Neurodegenerative diseases
Pathology
Positron-Emission Tomography - methods
Prefrontal cortex
Presenilin 1
Presenilin-1 - genetics
Salience
Tau protein
tau Proteins - metabolism
Thalamus
Topology
β-Amyloid
title Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid-%CE%B2%20and%20tau%20pathologies%20relate%20to%20distinctive%20brain%20dysconnectomics%20in%20preclinical%20autosomal-dominant%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guzm%C3%A1n-V%C3%A9lez,%20Edmarie&rft.date=2022-04-12&rft.volume=119&rft.issue=15&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2113641119&rft_dat=%3Cjstor_pubme%3E27151827%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3589-228b940a49da1594c7488c7da37bed6849fff32622bf3e3f23bfe9c4cba8b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653335005&rft_id=info:pmid/35380901&rft_jstor_id=27151827&rfr_iscdi=true