Loading…
Dashboard Design to Identify and Balance Competing Risk of Multiple Hospital-Acquired Conditions
Abstract Background Hospital-acquired conditions (HACs) are common, costly, and national patient safety priority. Catheter-associated urinary tract infections (CAUTIs), hospital-acquired pressure injury (HAPI), and falls are common HACs. Clinicians assess each HAC risk independent of other conditio...
Saved in:
Published in: | Applied clinical informatics 2022-05, Vol.13 (3), p.621-631 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
Hospital-acquired conditions (HACs) are common, costly, and national patient safety priority. Catheter-associated urinary tract infections (CAUTIs), hospital-acquired pressure injury (HAPI), and falls are common HACs. Clinicians assess each HAC risk independent of other conditions. Prevention strategies often focus on the reduction of a single HAC rather than considering how actions to prevent one condition could have unintended consequences for another HAC.
Objectives
The objective of this study is to design an empirical framework to identify, assess, and quantify the risks of multiple HACs (MHACs) related to competing single-HAC interventions.
Methods
This study was an Institutional Review Board approved, and the proof of concept study evaluated MHAC Competing Risk Dashboard to enhance clinicians' management combining the risks of CAUTI, HAPI, and falls. The empirical model informing this study focused on the removal of an indwelling urinary catheter to reduce CAUTI, which may impact HAPI and falls. A multisite database was developed to understand and quantify competing risks of HACs; a predictive model dashboard was designed and clinical utility of a high-fidelity dashboard was qualitatively tested. Five hospital systems provided data for the predictive model prototype; three served as sites for testing and feedback on the dashboard design and usefulness. The participatory study design involved think-aloud methods as the clinician explored the dashboard. Individual interviews provided an understanding of clinician's perspective regarding ease of use and utility.
Results
Twenty-five clinicians were interviewed. Clinicians favored a dashboard gauge design composed of green, yellow, and red segments to depict MHAC risk associated with the removal of an indwelling urinary catheter to reduce CAUTI and possible adverse effects on HAPI and falls.
Conclusion
Participants endorsed the utility of a visual dashboard guiding clinical decisions for MHAC risks preferring common stoplight color understanding. Clinicians did not want mandatory alerts for tool integration into the electronic health record. More research is needed to understand MHAC and tools to guide clinician decisions. |
---|---|
ISSN: | 1869-0327 1869-0327 |
DOI: | 10.1055/s-0042-1749598 |